By Leah Chibwe, Project 5 Trainee

This past summer, through the KC Donnelly Externship Award Supplement, I conducted a collaborative research project at the University of North Carolina (UNC) in Chapel-Hill with Dr. Mike Aitken and Dr. Jun Nakamura.

Screen Shot 2013-10-25 at 2.42.10 PM
Leah Chibwe

The objective of my time at UNC was to learn the DT40 bioassay based on chicken cell lines and use it asses the toxicity of Polycyclic Aromatic Hydrocarbon (PAH)-contaminated soil after bioremediation. Though I was quite excited about the opportunity, I was initially intimidated about leaving the familiarity of the chemistry lab at Oregon State University (OSU) and flying cross country to immerse myself in the unfamiliar (and very sterile!) world of cells and assays. It was a definite humbling learning experience; working with living cells taught me just how much of a virtue patience is –something that has helped me develop personally and as a researcher.

The KC Donnelly Externship created a platform on which we were able to combine analytical chemistry, biological and environmental engineering, and toxicology to address a shared concern. I was really inspired by the integration of the different ideas and mindsets from the various fields as we developed this project.

Before the externship, I was analyzing PAHs in remediated soil samples. At UNC, I learned about the DT40 assay and actually got to see how a lab-scale bioreactor (meant to simulate ex situ bioremediation) operated. I feel I now have a better understanding of how bioremediation works and the toxicity concerns often associated with PAHs. The experience has really added more depth to my research at OSU.

The externship was a very intense three months, but I really believe it was a pivotal moment in my development as an environmental health scientist; and has made me more appreciative of my research project. I also just had a great time interacting with everyone at the UNC Superfund Research Program (SRP).

 

Dr. Paul Slovic
Dr. Paul Slovic

On Oct. 16th, Dr. Paul Slovic visited Oregon State University to share and discuss issues related to risk communication with graduate students enrolled in the TOX 507/607 seminar.  This term the seminar is co-lead by the Superfund Research Center’s Research Translation Core and Training Core.

Dr. Slovic, a founder and President of Decision Research, studies human judgment, decision making, and risk analysis.  His research and expertise fit nicely with this term’s seminar focus on training students to communicate science and risk effectively to audiences outside of academia.

Some key points came out of the Q and A session with Dr. Slovic.

 

 1)  The importance of message framing.

(Reference: Know Your Audience, NWABR)
(Reference: Know Your Audience, NWABR)

After you publish a scientific paper, focus on how you will frame that information to the public.  How can you help your audience conceptualize the bottom line of the research? The facts never speak for themselves, which is why scientists need to “frame” their messages to the public.

All information is conveyed with a frame. Framing in science and risk communication can be viewed as positive or negative depending on who the audience is and what kind of information is

being presented. There is rarely neutral framing.  For that reason, it is important to have a clear message thoughtfully framed to invoke a desirable response by your audience.

Create messages that resonate with your audience.    

2)  The role of emotions and uncertainty.

Understand that risk perception comes from our gut feelings.  How you share information makes a difference, creates an image, and impacts a person’s perception of risk.

Our emotions are often tied to our motivation, positive or negative. Information will lack meaning if it does not invoke emotion.

If something is uncertain, people can interpret it the way that they want. (Example: When scientists began sharing studies that cigarette smoking caused cancer, the tobacco industry wanted to cultivate doubt, so they could keep their profits.). With certain topics, industry and others want to emphasize the unknowns and cast doubt.

When research studies are not definitive, help the public understand the strengths and limitations of that study. Frame the information so it is not biased, focusing on what the science predicts and the implications of that prediction.

 Be sure to present the data the best you can if you think people are distorting the data.

3)  Visuals make research real and relevant. 

Visual images are more powerful than statistics. Visuals help the mind process information. Make your research real and relevant by using visuals that invoke emotion and foster scientific understanding.

slovicgroup
Discussion with Dr. Paul Slovic in the TOX 507/607 seminar on Oct. 16, 2013

Find and share this seminar’s highlights and related articles on Twitter with hashtag #TOX607

Resources

By Erin Madeen, Project 1 Trainee

ucd.project.madeen[1]
Erin Madeen at the UC Entrepreneurship Academy,
September 17-19, 2013 @ UC Davis
The UC Davis Entrepreneurship Academy was a unique learning experience that teaches the basics of intellectual property as well as marketing and launching a new business. While I am not currently interested in launching a company, this experience provided valuable information on how to maintain flexibility with intellectual property.

As scientists, especially in the SRP, we are always developing new methods and systems to answer our specific questions. Many of those techniques or systems are patentable. Our goal as a federally funded program supported by tax payers is to provide accurate data that can be used to develop environmental policy for a better society. I was not aware that technology used to generate that data is patentable, only in the instance that it was not described in the public domain prior to applying for a patent. Additionally, once a patent has been applied for, the specifics of the technology can be presented in the public domain as a paper, or a presentation.

Also attending the academy were several prior SRP students from UC Davis and UC Berkeley who were able to patent technologies with their respective universities as students and are now launching companies with the technology licensed through the university.

It was an interesting experience to see the traditional binary of industry or academic lines blurred.

ucd.group.madeen[1]
Group photo of the participants at the UC Entrepreneurship Academy with Erin Madeen in the center.

The OSU Superfund Center’s Community Engagement Core is fortunate to have an established partnership with the Confederated Tribes of the Umatilla Indian Reservation (CTUIR).

The recently produced CTUIR – OSU 2012-2013 Newsletter shares the background, summary, and findings of a collaborative research project to understand polycyclic aromatic hydrocarbon (PAH) exposure related to smoked salmon.

salmon
Salmon fillet

Salmon, a first food, is important to the subsistence of Native Americans living in the Pacific Northwest. Smoking salmon is one of the traditional ways to preserve this seasonally abundant food and make it available year round.

People can be exposed to PAHs from breathing contaminated air or eating smoked foods although many other exposure pathways exist.

Each volunteer wore air sampling equipment and turned it on every time they went into the smoking structures.

The data showed the air in the tipi and the smoke shed contained PAHs.

tipi        tipifire       smokehouse

Pictured above from left: Traditional tipi, volunteer tending the fire in the tipi wearing an air sampler in black bag on his hip, traditional smoke shed.

The findings from this study were published in the Journal of Agricultural & Food Chemistry.
B, Harris S, Matzke M, Cardenas A, Waters K, Anderson K. (2012). Effect of Native American fish smoking methods on dietary exposure to polycyclic aromatic hydrocarbons and possible risks to human health. Journal of Agricultural & Food Chemistry, 60(27), 6899-6906. doi: 10.1021/jf300978m

Indigenous cultures perceive the natural environment as an essential link between traditional cultural practices, social connectedness, identity, and health. Many tribal communities face substantial health disparities related to exposure to environmental hazards. We asked 27 volunteers who were members of the CTUIR their opinions on meanings of health and how their environment interacts with their health.

The findings from the focus group discussions were published in the journal Environmental Justice.

Schure M, Kile ML, Harding AK, Harper B, Harris S, Uesugi S, Goins T. Perceptions of environment and health among community members of the Confederated Tribes of the Umatilla Indian Reservation.  Environmental Justice. June 2013, 6(3): 115-120. doi:10.1089/env.2013.0022.

In addition, the CTUIR – OSU 2012-2013 Newsletter shares recently appointed members of the Tribal Advisory Board.

We hope you enjoy the newsletter!

ZebrafishRobyn Tanguay, PhD (Project 3 ) focuses on examining the effects of selected chemicals and chemical classes on zebrafish development and associated gene expression pathways.

The Tanguay research group recently collaborated with Terrence J. Collins, PhD, a champion in the field of green chemistry at Carnegie Mellon University.

Collins and his collaborators showed that specific green chemicals (a group of molecules called TAML activators) used with hydrogen peroxide, can effectively remove steroid hormones from water after just one treatment. Steroid hormones are common endocrine disruptors found in almost 25 percent of streams, rivers, and lakes.  Collins needed to understand the safety of TAML activators to move forward on this problem.

Tanguay’s group exposed zebrafish embryos to seven different types of TAML activators. None of the TAML’s impaired embryo development at concentrations typically used for decontaminating water.

The collaboration resulted in a new journal publication in Green Chemistry.

These are important findings that contribute toward TAML activators getting commercialized for water treatment.

Endocrine disruptors and human health

Endocrine disruptors can disrupt normal functions of the endocrine system and impair development, by mimicking or blocking the activities of hormones in wildlife. Several animal studies suggest that endocrine disruptors can also affect human health, and may be involved in cancers, learning disabilities, obesity, and immune and reproductive system disorders.

Robyn Tanguay’s leadership in utilizing  zebrafish

Robyn Tanguay is Director of the Sinnhuber Aquatic Research Laboratory, which is the largest zebrafish toxicology lab in the world.

In 2012, Dr. Tanguay received an EPA grant award, “Toxicity Screening with Zebrafish Assay”.  The award is for three years and almost two million dollars in funding to examine the developmental toxicology of at least 1000 chemicals.

Dr. Tanguay and her research team  have tested over 3,000 compounds of interest to the National Toxicology Program (NTP), to complement the ongoing high-throughput screening efforts in the U.S. government’s multiagency Tox21 research program.

More Information:

Citation: Truong L, DeNardo MA, Kundu S, Collins TJ, Tanguay RL.  2013. Zebrafish assays as developmental toxicity indicators in the green design of TAML oxidation catalysts. Green Chem; doi:10.1039/C3GC40376A [Online 15 July 2013].