THE POLLUTION INSIDE US
Toxicologists examine the chemicals of modern life.
By: Peg Herring, Oregon’s Agricultural Progress

Forty years ago, chemical pollution was the stuff that spewed from tailpipes, smokestacks, and sewers. Rivers burned, fish died, and forests withered under acid rain until Congress passed strict laws to curb the flood of manmade chemicals pouring into our waterways and atmosphere.

Man-made and naturally occurring chemicals pervade modern life. Here are a few that have been linked to human health problems.

However, 40 years ago there was little consideration of the chemicals that we were pouring into our bodies. The chemicals we use to sanitize our hands, package our foods, and keep our beds from going up in flames have seeped into our bodies in ways that were unimaginable a generation ago. Today, we are marinating in antibacterials, hormone disruptors, and flame retardants.

Man-made and naturally occurring chemicals pervade modern life. Here are a few that have been linked to human health problems.

“There are more than 80,000 man-made chemicals in existence today, and an estimated 2,000 new chemicals are introduced each year,” said Craig Marcus, a toxicologist at Oregon State University. “We encounter thousands of them every day, in food, kitchenware, furniture, household cleaners, and personal care products. And very few of them have been adequately tested for safety.” Continue reading

Diana Rohlman, CEC Program Coordinator, presented at the Contemporary Northwest Tribal Health Conference. The conference was hosted at the World Trade Center in Portland, Oregon on March 28-29, 2014.

View Presentation

Evolution of a Robust Tribal-University Research Partnership to Investigate Tribal Exposures and Build Scientific Capacity 

The Northwest Portland Area Indian Board posted all of the Conference Presentations.

The overall theme of the conference was around community-driven or community-based participatory research to advance the area of health research within Tribal communities.There were some fantastic ‘big-data’ presentations by the Northwest Portland Area Indian Health Board (NPAIHB) looking at intake and outtake data from federally funded clinics.  ~Diana Rohlman, Presenter, Contemporary Northwest Tribal Health Conference

Shared Highlights

The Community Engagement Core (CEC) takes OSU SRP Center expertise on polycyclic aromatic hydrocarbons (PAHs) and applies it to the needs of community partners.
The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) has been a key partner for CEC.

CTUIR is located in Eastern Oregon, so one of the limitations to overcome is distance. One reason the partnership has thrived is because the CTUIR has scientific capacity and resources, which is unique amongst Tribal nations. Both partners are bringing scientific expertise to the table.

Graduate students gain knowledge and experience with Tribes by participating in the CEC research projects.
Graduate students gain knowledge and experience with Tribes by participating in the CEC research projects.

Five Key Features of the OSU SRP Tribal-University Partnership

  1. Utilizes Community-based Participatory Research
  2. Builds scientific and cultural capacity between CTUIR and OSU researchers
  3. Utilizes data sharing agreements to protect Tribal rights
  4. Develops culturally appropriate risk reduction strategies with CTUIR
  5. Disseminates knowledge through journals, newsletters and community meetings to provide Tribal perspectives on research practices. (See the OSU SRP web site for extensive resources that include collaborative publications and presentations.)
Cory Gerlach hanging out with the zebrafish at the Sinnhuber Aquatic Research Laboratory (SARL)
Cory Gerlach hanging out with the zebrafish at the Sinnhuber Aquatic Research Laboratory (SARL)

Cory Gerlach is an undergraduate student in the Tanguay lab and will be graduating this spring with an Honors Bachelor of Science in Bioresource Research.  Besides winning awards, Cory has transformed his career with valuable research experience gained over the last two years.

In 2013, Cory won the best undergraduate research presentation at the PANWAT meeting in Seattle. The title of his PANWAT poster was “Mono-substituted isopropylated triaryl phosphate, a major component of flame retardant mixture Firemaster 550, is an AHR agonist that exhibits AHR-independent cardiac toxicity”.

In 2014, Cory won the best undergraduate poster presentation at the OSU EMT Research Day, and he received a Pfizer SOT Undergraduate Student Travel Award for the 2014 Annual Meeting of the Society of Toxicology (SOT) in Phoenix, AZ to present his recent findings.

Reflection of Experience by Cory Gerlach

My experience in the Tanguay lab has completely changed my career path.
Before I began my undergraduate research, I thought I would get a masters
in public policy or shift my focus from science to policy or law in some
graduate program. However, in the Tanguay lab I discovered my passion for
bench research, found that I was good at it, and learned that these basic
discoveries are crucial in order to affect policy and therefore improve
public health. Having Dr. Tanguay as a mentor has also helped me to keep
in mind the big picture of my research, and he has taught me that there is
always room for innovation and improvements to how we answer big research
questions. Continue reading

By Sara Mishamandani

The familiar rubbery wristbands that have promoted various causes in recent decades are now being used to archive a person’s chemical exposure during a given period of time.   (Photo courtesy of Kim Anderson)
The familiar rubbery wristbands that have promoted various causes in recent decades are now being used to archive a person’s chemical exposure during a given period of time. (Photo courtesy of Kim Anderson)

As the environmental health science field strives to better understand the complexity of personal chemical exposures, NIEHS-funded researchers at the Oregon State University (OSU) Superfund Research Program (SRP) led by Kim Anderson, Ph.D., have developed a simple wristband and extraction method that can test exposure to 1,200 chemicals.

Continue reading

Our Center is multi-investigator, multi-disciplinary and multi-institutional. In partnership with Pacific Northwest National Laboratories (PNNL), and other stakeholders and collaborators, we are developing new technologies to identify and quantitate known and novel polycyclic aromatic hydrocarbons (PAHs) found at many of the nation’s Superfund sites and assess the risk they pose for human health.

Women@Energy: Dr. Katrina Waters  Photo credit: energy.gov
Women@Energy: Dr. Katrina Waters
Photo credit: energy.gov

The research projects in our Center collect large amounts of molecular and chemical data. This data includes measuring PAH mixtures in environmental samples, determining toxicity of PAH mixtures, and the mechanism(s) of action for these toxic endpoints.

Our Biostatistics and Modeling Core, lead by Dr. Katrina Waters, greatly enhances our Center by providing expert statistical and bioinformatics data analysis support and software solutions for data management and interpretation.

Katrina Waters recently became the Deputy Director for the Biological Sciences Division at the Pacific Northwest National Lab (PNNL). Her expertise is in computational biology, and she works collaboratively with all of the research projects and co-authors with them.

This multidisciplinary training of toxicology students and fellows at OSU and PNNL is a unique strength of our program. Our SRP Trainees have benefited greatly from the PNNL partnership.  Students have gone to the lab in Richland, WA to be trained in Bioinformatics, Statistics and Study Design. More training workshops are being scheduled for this summer and fall.

Waters presented at SOT’s FutureTox II: In Vitro Data and In Silico Models for Predictive Toxicology on January 16, 2014. Her talk was entitled Computational Tools for Integration of High Throughout Screening (HTS) Data. She utilized examples from the collaboration with Robyn Tanguay and his zebrafish assay for toxicity testing (Project 3).

Susan Tilton
Susan Tilton works with Dr. Katrina Waters and the OSU SRP Biostatistics and Modeling Core Group

Dr. Susan Tilton, also from PNNL,  presented at FutureTox as well. The title of her presentation was ‘Pathway-based prediction of tumor outcome for environmental PAH mixtures’.  In this study, they developed a mechanism-based approach for prediction of tumor outcome after dermal exposure to PAHs and environmental PAH mixtures.  Their model was successfully utilized to distinguish early regulatory events during initiation linked to tumor outcome and shows the utility of short-term initiation studies in predicting the carcinogenic potential of PAHs and PAH mixtures.

“Dr. Waters and her group have proven to be of great value in not just the interpretation of extremely large and complicated data sets, but also in the “front-end” study design, which results in enrichment of the subsequent data obtained.”
Dr. David Williams, OSU SRP Center Director