Assistant Professor Brian Fronk researches thermal energy systems and heat transfer in the domains of both applied and fundamental science. Among his primary aims is to develop technologies to make renewable energy economically competitive with fossil fuels. Fronk also conducts fundamental research in two-phase flow, phase change heat transfer, and supercritical heat transfer processes. He is the director of the Thermal Energy Systems and Transport (TEST) Lab, which is equipped to conduct coupled experimental and computational investigations, with an end goal of developing high-impact, economically feasible energy systems. Fronk calls sustainable energy and water systems among the most critical challenges of the 21st century.
“Ultimately, all the work we’re doing is to improve the efficiency of energy conversion processes, with the goal of saving energy and reducing emissions,” he said. One of the keys is reducing energy consumption in our everyday lives, such as the energy required to heat water and to heat and cool interior spaces, which account for a sizeable proportion of the country’s energy demands.
Fronk joined Oregon State in 2014. After receiving his B.S. in Mechanical Engineering in 2005 from Penn State University and his M.S. from the Georgia Institute of Technology, he joined Carrier Corporation, where he worked in areas of CO2 compression and transport refrigeration. After earning his master’s degree, Fronk had not seriously considered joining the ranks of academia, but after some time in industry he missed doing research, so he returned to Georgia Tech for his Ph.D., which led him to OSU.
In one of his current research projects, he is part of a multidisciplinary team, funded by the U.S. Department of Energy (DOE) to improve the efficiency of high-temperature solar thermal power. Typical rooftop solar panels convert sunlight directly into electricity. But on a large scale, such systems are usable only during daylight, because storing the electrical energy generated by photovoltaic cells in batteries is still expensive. In a solar thermal power system, mirrors focus sunlight on fluids (such as molten salts) or gasses (such as carbon dioxide), heating them to extraordinarily high temperatures. That thermal energy can be stored more cost effectively than electric energy and tapped around the clock. But solar thermal power is not yet cost competitive with alternatives such as natural gas or coal, which is something Fronk hopes to change. “We’re looking at very small channels, or flow pathways, to get more efficient heat transfer, which means we could make solar receivers — where the sunlight is focused — smaller and more efficient, and that would mean significantly lower system costs,” he said. “That would directly decrease the cost of electricity associated with concentrated solar power. Once the price is on par with fossil fuel alternatives, it will make economic sense to start building these plants on a large scale.”
In other work funded by NW Natural and the DOE, Fronk is working to improve the efficiency of systems that heat water and which heat and cool interior spaces — all of which are enormous energy drains in the United States. “A lot of my work has applications in the building industry,” he said. “Reducing the energy demand related to heating and cooling by just a few percent will translate to huge energy savings nationally.”
Fronk is also conducting fundamental science, funded by the NSF, in which he seeks to better understand the heat transfer mechanisms in supercritical fluids — fluids at such high temperatures and pressures that they exist as neither distinctly liquid nor distinctly gas. His particular interest in supercritical fluids is using them to support high-temperature solar power plants, and possibly for cooling high-power electronics.
In high school, Fronk thought he’d become an investment banker. But that changed for good when he worked with his father (an engineer) to restore a 1968 Pontiac GTO. “Seeing the engine in pieces and understanding how they all fit together to create something greater was intriguing and really got my interest.” he said. Additional experiences as an intern with General Motors and at a Shell oil refinery offered him additional perspectives on engineering, and particularly about energy production and use, which helped to cement his desire to explore energy-related fields.
Some of Fronk’s greatest career satisfaction comes from working with his graduate students. He gets a particular boost from watching them publish papers and present them at conferences. “I enjoy watching the students grow,” he said. “My proudest moments come when sitting in the audience and seeing one of my students present their work well. That’s as good as it gets. I’ve also involved undergrads in our research, and it’s exciting to see them grow and take ownership of the projects.”
He encourages students at all levels to communicate their goals to faculty members and take advantage of their office hours. “They can benefit a lot by spending a little time getting to know their teachers,” Fronk said. “It helps to make a big place like this feel smaller and it can make their time here much more rewarding. I like to get to know my students — who they are and why they’re here. And if I know what a student’s ambitions are, I can keep my eye out for opportunities that come across my desk.
— Steve Frandzel
CATEGORIES: facultyspotlight mimenews news
I had been one of his students for a very short time as visiting scholar. I have not found anyone like him for the support and encouragement. Most importantly he would give a freedom to student to choose a different approach for solving a problem rather then conventional way. I am proud of working under his supervision.