An especially muddying factor in unraveling ecological policy disputes is identifying the role of religious views in shaping scientific information.  These days, religious, ethical, or moral values are often embedded in “science” to form a type of information that is no longer entirely scientific.  I call this type of information Religious Ecology, which is now prevalent even in the peer reviewed scientific literature.  Such information superficially resembles Scientific Ecology, but rather than being policy neutral, it incorporates particular religious or ethical assumptions, often in ways that are opaque to the average reader or listener (see figure below for how this happens).  Thus, Religious Ecology is normative science, a form of policy advocacy often unrecognized because the embedded and assumed policy preferences are difficult to detect.

            Religious Ecology assumes a set of norms about how humans should live and make decisions about ecological policy issues.  After reviewing many peer reviewed scientific articles that exhibit embedded values and policy preferences, I have modeled an analog to the well-known Judeo-Christian Ten Commandments.  In practice, the Ten Commandments of Religious Ecology (see list below) are not rigid, but provide insight into how the policy advocate (i.e., the “believer”) perceives policy choices and thus why those values and policy preferences are embedded in the resulting scientific reporting.

           

            Of course, many religious and ethical-based philosophies offer their preferred “rules” or “guidelines” for ecological policy issues, but within Religious Ecology, the values-based and science-based ideas are intertwined and difficult to separate.  Specifically, in ecologically oriented science, at their core, they share some version of the well-known Judeo-Christian Garden of Eden’s Romantic View of Nature, wishing humans to live harmoniously with the natural, non-human world.  The Garden of Eden was a paradise on Earth, but the fall from Grace began with humans succumbing to temptation and greed and enduring the resulting pollution.  The Ten Commandments of Religious Ecology similarly delineate a path back to the Garden of Eden, the natural and optimal state of ecosystems.  Thus, Religious Ecology is either a form of science infused with ethical values or, perhaps more accurately, a religion imbued with science.

            Let me illustrate with an example.  Consider Commandment #1 and how it is sometimes stealthily embedded in Scientific Ecology.  Referring to a piece of land as a “wheat field” is a policy neutral statement of information (i.e., science or a scientific fact).  It is the essence of classic Baconian science.  In contrast, referring to the same field as a “degraded or disturbed ecosystem” or a “healthy and thriving ecosystem” is not policy neutral because it has an embedded, assumed policy preference (i.e., Commandment #1 is accepted as the preferred policy).  Nothing has changed scientifically;  only the labeling differs.  Thus, it is normative science.

            Frequently, incoming students in my graduate-level ecological policy class are initially unaware of the impact of word choice and subtler forms of normative science.  Realistically, should professors expect graduate students (much less undergraduates) in ecology, environmental science, natural resources, fisheries and wildlife, and conservation science to understand issues such as normative science and stealth policy advocacy?  Or do they understand the arguments, but choose to advocate their preferred policy preferences, nonetheless?  Perhaps a more accurate answer is the observation (paraphrased) from one student,

Students in this class often accept that this assertion reflects contemporary reality and is, therefore, professionally acceptable.  Further, many students also accept the Ten Commandments of Religious Ecology as self-evidently true and appropriate for scientific communication.

            Like other simplified summaries of religious doctrine, nothing in their application is unequivocally absolute or consistent.  However, the Ten Commandments of Religious Ecology afford insight into how many ecological policy advocates (including professional scientists) tend to embed their values in the scientific information they develop and provide.  Rarely will such advocates explicitly categorize their scientific information as influenced by religious or faith-based values, so “users” of scientific information must be alert and not assume that all scientists are playing it straight.  Perhaps most stick to science, but others intentionally do not.  Hence, it is not surprising that public trust in the impartiality of scientists has declined.

            I encourage caution when assessing the scientific impartiality of professional ecologists who use their scientific credentials to promote their personal (or their employer’s) policy preferences.  For example, without resorting to the Ten Commandments of Religious Ecology, nothing in science says that a dam should be removed or maintained.  A free-flowing river is different ecologically than that same river dammed, but it is not “better or worse” without applying a value-based benchmark or baseline (i.e., often one or more of the Ten Commandments of Religious Ecology).  Consequently, there is no exclusively scientific basis for labeling an ecosystem’s condition as “healthy” (or “degraded”) unless a value or policy preference is applied to scientific information.

            It is easy for readers or listeners inexperienced with policy analysis to interpret “benchmarks” or “baselines” presented by scientists as the implicitly preferred policy choice when that may not be the scientist’s intent.  Such value choices (i.e., healthy, degraded, better, worse) arise outside the scientific enterprise, at least in a democracy.  Conversely, concepts like “healthy” are common in medicine because there is general public and political agreement about what constitutes a healthy individual human.  Thus, the metaphor of a healthy ecosystem analogous to a healthy individual human is weak and misleading.  Unlike individual humans, ecosystems do not get sick and die unless someone, using specific values and policy preferences, defines the desired, undisturbed, benchmark, or otherwise preferred state of that particular ecosystem.

            For scientists working on contemporary and highly contested ecological policy issues, sticking to science and policy neutrality requires sustained commitment, but it is the right thing to do.  Graduate training, professional mentorship, and institutional standards of practice can help ensure that scientists operate within scientific “good practices” and avoid becoming just another confusing advocacy voice struggling to be heard by misusing science.  The public is best served when scientists (sticking to Scientific Ecology) are honest brokers of scientific information.  Conversely, those slipping into Religious Ecology or other value-based policy constructs are working in the realm of policy advocacy.

Author Info:

            Robert T. Lackey (Robert.Lackey@oregonstate.edu) is a professor of fisheries at Oregon State University, where he teaches a course in ecological policy and mentors graduate students.  He was previously deputy director of the U.S. Environmental Protection Agency’s 350-person National Environmental Research Laboratory in Corvallis, Oregon, from which he retired in 2008.

~~~~~~~~~~~~~~~~~

Robert T. Lackey

Department of Fisheries, Wildlife, and Conservation Sciences

Oregon State University

Corvallis, Oregon  97331

***********************

https://media.oregonstate.edu/media/t/1_xoz803bc

***********************

Seminar Summary: The overall public policy goal of restoring Pacific salmon wild runs in the Columbia River Basin appears to enjoy widespread public support.  Billions of dollars have failed to reverse the long-term, overall decline.  To answer the question of whether the effort to rebuild wild runs through the release of hatchery-produced salmon, I asked 58 well-known salmon scientists to predict (anonymously) how the overall abundance of Columbia River Basin salmon (including steelhead) would change after 20 years if fishing was stopped and hatcheries were closed.  About 83% predicted that current (wild plus hatchery) salmon abundance (overall Columbia Basin run) would decline without hatchery stocking and fishing.  Most surveyed experts predicted that stopping fishing and closing hatcheries would not greatly change the current overall wild-only abundance in the Basin.  Based on these results, salmon fishing and hatchery additions are not currently believed to be among the major drivers of the low abundance of wild salmon in the Columbia River Basin.  The current overall abundance of wild salmon in the Columbia River Basin (roughly 3-5% of pre-1850s levels) is within the expected range, given the amount and availability of high-quality salmon habitat, past and current ecological changes, and overarching trends in oceanic and climate conditions.  Thus, stopping fishing and closing hatcheries likely will not drastically change the current wild salmon abundance in the Basin — and it may well drive wild runs even lower, according to many experts.

*Presented at a Pacific Salmon Commission (Vancouver, British Columbia, Canada) seminar on November 29, 2023.

————–

Click Here for the Seminar Link

by 

Robert T. Lackey

Many of today’s ecological policy issues are politically contentious, socially wrenching, and replete with scientific uncertainty.  They are often described as wicked, messy policy problems (e.g., reversing the decline of salmon;  deciding on the proper role of wildfire on public lands;  what to do, if anything, about climate change;  worries about the consequences of declining biological diversity;  making sense about the confusing policy choices surrounding notions of sustainability).

Wicked, messy ecological policy problems share several qualities:  (1) complexity —  innumerable options and trade-offs;  (2) polarization — clashes between competing values;  (3) winners and losers — for each policy choice, some will clearly benefit, some will be harmed, and the consequences for others is uncertain;  (4) delayed consequences — no immediate “fix” and the benefits, if any, of painful concessions will often not be evident for decades;  (5) decision distortion — advocates often appeal to strongly held values and distort or hide the real policy choices and their consequences;  (6) national vs. regional conflict — national (or international) priorities often differ substantially from those at the local or regional level;  and (7) ambiguous role for science — science is often not pivotal in evaluating policy options, but science often ends up serving inappropriately as a surrogate for debates over values and preferences.

As if they are not messy enough, ecological policy issues may become further clouded by skepticism about the independence of scientists and scientific information.  Much of the available science is tendered by government agencies, companies and corporations, and public and private organizations, as well as myriad public and private interest and advocacy groups.  Each arguably has a vested interest in the outcome of the debate and often promulgates “science” that supports its favored position.

All ecological policy problems have unique features, thus there are exceptions to every generality, but are there lessons learned that can be broadly applied?  Like all axioms, mine are not universally true, but are applicable in most situations.

  • Ecological Policy Axiom 1 — The policy and political dynamic is a zero-sum game

Probably the most sobering reality for the uninitiated is that selecting any proposed policy choice results in winners and losers.  The search for a “win-win” choice, which sounds so tantalizing to decision makers, is hopeless with even superficial policy analysis.  There are always winners and losers even though people running for office may try to convince the voters otherwise.  This axiom is why policy making is sometimes described as “the political process of picking winners and losers.”

  • Ecological Policy Axiom 2 — The distribution of benefits and costs is more important than the ratio of total benefits to total costs

Benefits are the consequences of a policy option or decision that are categorized as good outcomes.  Benefits are sometimes measured solely in terms of money, but are more broadly encompassed by all the desirable things that are most likely to happen.  Conversely, the costs are the undesirable outcomes that are likely to happen (often, but not always, measured in monetary terms).

  • Ecological Policy Axiom 3 — The most politically viable policy choice spreads the benefits to a broad majority with the costs limited to a narrow minority of the population

Democracies operate on delegated compromise validated by periodic voting.  To gain sufficient political support (votes) for a proposed policy, it is prudent for the decision maker to spread the benefits across a sufficiently large number of people to garner majority support.  The corollary is that those (including future generations) who bear the costs should be a minority and the smaller the better.

  • Ecological Policy Axiom 4 — Potential losers are usually more assertive and vocal than potential winners and are, therefore, disproportionately important in decision making

With many ecological policy questions, those who bear the costs, the losers, have a disproportionately greater influence on the decision making process.  While policy analysis tends to evaluate the rationality of competing policy arguments, the political process tends to weigh breath and vigor in support of each competing policy option.  Issues of perceived fairness are important in the political process, but difficult to quantify in policy analysis.

  • Ecological Policy Axiom 5 — Many advocates will cloak their arguments as science to mask their personal policy preferences

Technocrats, as I apply the label, are individuals with scientific training who are responsible for implementing law or ecological policy.  There is an understandable impulse by technocrats to insert what they think is or should be the appropriate public policy goal or option.  For example, should ecological restoration be aimed at recreating the ecological condition that existed at the beginning of the Holocene, just prior to 1492, or at the end of last week?  The answer requires making a value judgment — a policy choice that is necessarily a political judgment — and it is not a scientifically derived decision.  Ecologists and other scientists should assess the feasibility and ecological consequences of achieving each possible restoration target.  Selecting from among the choices, however, is a societal enterprise.

  • Ecological Policy Axiom 6 — Even with complete and accurate scientific information, most policy issues remain divisive

The lament that “if we just had some better science, we could resolve this policy question” is common among both scientists and decision makers.  Calls for more research are ubiquitous in ecological policy debates.  In most policy cases, even if we had complete scientific knowledge about all aspects of an issue, the same rancorous debate would emerge.  Root policy differences are invariably over values and preferences, not science and facts.

  • Ecological Policy Axiom 7 — Demonizing policy advocates supporting competing policy options is often more effective than presenting rigorous analytical arguments

Scientists and policy analysts become frustrated when they fail to recognize that political debates are partly logical argument and partly image.  Negative images are often considered more effective in swaying people than positive ones.  In fractious ecological policy debates, proponents often spend more energy demonizing their opponents than sticking to rational policy analysis.  My experience is that such tactics are often effective in policy debates;  many people are moved by negative arguments.

  • Ecological Policy Axiom 8 — If something can be measured accurately and with confidence, it is probably not particularly relevant in decision making

In my experience, most scientists prefer to talk about things that they can measure with some degree of confidence.  Fish population abundance, recruitment rates, optimal habitat, toxicity levels, and field surveys are within our comfort zone.  We can put confidence limits on these numbers;  we can duplicate the data gathering year after year;  we can often forecast future conditions with some degree of confidence.

  • Ecological Policy Axiom 9 — The meaning of words matters greatly and arguments over their precise meaning are often surrogates for debates over values

In my experience, many citizens get frustrated in ecological policy debates because the advocates of various competing choices often seem to argue over semantic nuances rather than getting on with making decisions.  The precise meaning ascribed to key words is important and is often the battleground over what policy option is ultimately selected.  The debate over definitions is really a policy debate.  How should pivotal words such as “ecosystem health,” “sustainability,” “degraded,” “biological integrity,” “endangered,” “wild,” and “impaired” be defined?  Definitions chosen will lead (at least in the mind of the uninformed) to a particular policy option.  Thus, the debate over what might appear to be semantic nuances is really a surrogate debate over values and policy preferences.

Conclusion

Many of today’s ecological policy issues are contentious, socially divisive, and full of conundrums.  They are, however, typical of those that professional natural resource and environmental scientists will confront, both now and for the foreseeable future.  Those of us who provide information to help inform the participants involved in ecological policy debates need to be cognizant of and appreciate the importance of scientific information, but we also must recognize the reality that scientific information is just one element in complex political deliberations in a democracy.

***************

by

Robert T. Lackey

More than two decades ago, while Deputy Director of EPA’s national research laboratory in Corvallis, Oregon, I presented a talk to a group of community activists about why salmon populations along the West Coast have dropped to less than 5% of their historical levels.  I’ve given such talks many times so I was confident that I had heard just about every question that might be asked.  I was wrong.

The opening question was asked by a well-known political activist.  He was direct, pointed, and bursting with hostility:  “You scientists always talk about our choices, but when will you finally tell us what we SHOULD do about the dramatic decline of West Coast salmon?  Quit talking about the science and your research and tell us what we should do!  Let’s get on with it!”

From the nods of approval offered by many in the audience, his impatience with science and scientists was broadly shared.

What does the public expect from scientists regarding today’s ecological policy issues? Some examples of such policy challenges include the decline of salmon;  deciding on the proper role of wildfire on public lands;  what to do, if anything, about climate change;  the consequences of declining biological diversity;  and making sense of the confusing policy choices surrounding “sustainability.”

The lament “if we just had some better science, a little more data, we could resolve this policy question” is common among both scientists and decision makers.  Calls for more research are everywhere in ecological policy debates.

In most cases, even if we had complete scientific knowledge about all aspects of an issue, the same rancorous debate would emerge.  Root policy differences are invariably over values and preferences, not science, data, and facts.

In a pluralistic society, with a wide array of values and preferences competing for dominance, the ecological policy debate is usually centered around whose values and preferences will carry the day rather than over scientific information.

So what was my answer to the emotionally charged question from the political activist?

It was: “Science, although an important part of policy debates, remains but one element, and often a minor one, in the decision-making process.  We scientists can assess the ecological consequences of various policy options, but in the end, it is up to society to prioritize those options and make their choices accordingly.”

He wasn’t pleased.

***************

by

Robert T. Lackey

In science, when you see the words “natural,” “healthy,” “degraded,” and “biological integrity,”  all these terms, and many others, have embedded assumptions about what someone or some organization regards as a desirable value choice, a preferred policy choice.

These and similar words have no place in science.  They are classic examples of normative science.  Their use in scientific publications is simply policy advocacy disguised as science.

The words are fine for management, expected in policy advocacy, but not OK in science.

Here is a test:  first, put on your science hat.  Now imagine that the public owns a 5,000-acre stand of old-growth (never logged) forest which is being considered by a government agency for an alternative use.  Scientifically, is it preferable to (1) preserve this landscape as is, or (2) remove the trees and build a wind farm?

Neither ecological state is preferable scientifically!   At least not without assuming, perhaps unwittingly, a policy preference, a value choice.  If the science relevant to this policy question is presented in such a way to subtly favor either policy option, it is a classic example of normative science.

It may look like a scientific statement.  It may sound like a scientific statement.  It is often presented by people who we assume to be operating as scientists.   But, such statements in science are nothing more than “policy advocacy masquerading as science.”

Anyone following basic scientific principles should say:

            “Pristine ecosystems are neither superior, nor inferior, to human-altered ones.  Different, for sure, but not better or worse.”

Let me wrap up by offering Charles Darwin’s advice to scientists.  Remember that he was under a lot of social pressure to make his scientific findings conform to the dominant political and theological views of the time.  He offered pithy guidance to scientists:

          “A scientific man ought to have no wishes, no affections, a mere heart of stone.“

Strict, uncompromising, and unequivocal advice, but spot-on for scientists both then and now.

***************

by

Robert T. Lackey

Several years ago, toward the end of my career with the U.S. Environmental Protection Agency, one of the “outreach” staff in Washington, DC, telephoned me in Corvallis and posed a question:  “In science, why isn’t the notion of ecosystem health a useful metaphor to convey scientific information?  I see the metaphor used all the time.”

When I provided a long-winded, complicated, technically rigorous answer, the staffer was obviously disappointed. Evidently, he was looking for something simple and clear-cut.  I then asked, ever so diplomatically, to provide a brief written answer that could be published in the EPA internal blog.  What follows is an edited version of what was submitted.

Very young children have a habit of asking innocent, but thorny questions.   My grandson, however, has reached an age where innocence no longer passes for an excuse for his questions;   he knows enough now that his questions reflect the traits of a budding intellectual troublemaker.

A case in point:  here is my answer to his question about the increasingly popular term:  ecosystem health.

          “Grandpa, in school today in my science class, we talked about healthy ecosystems. My teacher says that when we are not feeling well, we go to a doctor to find out how to get healthy. If I have a sick ecosystem, she says that I should go to a scientist to find out how to make the ecosystem healthy. Dad says you are a scientist, so what is a healthy ecosystem?”

It is a good question and one that I, as a research scientist who has worked on such issues for over 40 years, should be able to answer with ease.

This seemingly straightforward question, however, does not have a simple answer. Further, the answer requires a clear understanding of the proper role of science in a democracy.

First, how is a person to recognize a healthy ecosystem?  Many might identify the healthiest ecosystems as those that are pristine. But what is the pristine state of an ecosystem? Is it the condition of North America prior to alterations caused by European immigrants, say 1491?  Or perhaps it is the condition of the land sometime well after the arrival of immigrants who came by way of the Bering land bridge, say 1,000 years ago? Or maybe it is the state of North America prior to the arrival of any humans, say more than 15,000 years ago?

Ultimately it is a policy decision that will specify the desired state of an ecosystem. It is a choice, a preference, a goal.

Scientists can provide options, alternatives, and possibilities, but ultimately in a democracy, it is society that chooses from among the possible goals.

For example, a malarial-infested swamp in its natural state could be defined as a healthy ecosystem, as could the same land converted to an intensively managed rice paddy.  Neither the swamp nor the rice paddy can be seen as a “healthy” ecosystem except through the lens of a person’s values or policy goals.

Once the desired state of an ecosystem is specified by someone, or by society overall through laws and regulation, scientists can determine how close we are to achieving that goal. They might even offer some approaches that might better achieve the goal.  Ultimately, though, it is society that defines the goal, not scientists. One person’s sick ecosystem is another person’s healthy ecosystem.

So, the answer to my grandson’s provocative question is that human health is not an appropriate metaphor for ecosystem health.  There is no inherently “healthy” state of ecosystems except when viewed from the perspective of societal values.

Pristine ecosystems (e.g., wilderness watersheds, Antarctica, uninhabited tundra) are certainly very different than highly altered ecosystems (e.g., farms, city parks, harbors) but neither a pristine ecosystem nor a highly altered ecosystem is scientifically better or worse — just different.

***************