Employees in the Center for Applied Systems and Software (CASS) in the College of Engineering are teaching a workshop for high school teachers to learn how to create mobile apps for Apple devices. The three-day workshop is being held August 13 – 15, 2018 by Professional and Continuing Education (PACE) at Oregon State University.
The course is intended for any interested teacher, even if they have no programming experience. By the end of the workshop the participants will create their own app that can run on an Apple device using the programming language called Swift. They will also have the tools, including lesson plans, to teach programming in their class. Another benefit is that they will continue to have online support with CASS when they are implementing the program in their class.
“By teaching this workshop, we are enabling teachers to use this really awesome curriculum from Apple in their high schools. And then hopefully that will help interest more young people in computer science,” said Carrie Hertel, director of the Software Development Group for CASS.
Hertel is excited to expand CASS’s outreach to high school teachers and hopes to hold more workshops in the future, as well as provide a modified workshop for professionals.
A week-long STEM Academy camp to introduce high-school students to cybersecurity was held on the Oregon State University through campus last week. Although it was the first time the camp was held in Corvallis, it is the third year the camp has been operating.
The location was not happenstance. NW Cyber Camp co-founder, Zander Work, just completed his freshman year at Oregon State where he made connections with faculty and graduate students in cyber security who helped teach the courses. Instructors also included alumni and other industry representatives from NuScale Power, McAfee, Splunk, NetSPI, Cylance, and PKI Solutions.
“The students were awesome,” Work said. “Everyone was very engaged with the speakers and they asked a lot of good questions.”
The goal of the camp is to get more students interested in the field of cybersecurity which has over 300,000 unfilled job openings, according to Cyber Seek.
“The camp has definitely shown me a lot more opportunities for what I can do in the future with cybersecurity,” said Grace, one of the camp participants. “There are a lot of different fields you can go into like data science, machine learning, ethical hacking, or security work. That’s been really cool to learn about.”
Jayde, another camp participant, already has plans to join the Air Force and focus on cybersecurity.
“I really liked the hands-on activities and learning about real examples of hacking,” Jayde said.
Both students mentioned it was harder than they were expecting, but in a good way.
“The guest speakers have been fantastic. Everyone is knowledgeable and teach at a rigorous enough level that people don’t get bored,” Grace said.
The 20 students at the Oregon State camp came from Corvallis, Albany, Philomath and Lebanon. The camp overall hosted 110 students this summer including sites in Portland, Gresham, Wilsonville, and Bend.
Rakesh Bobba, assistant professor of electrical and computer engineering and the faculty organizer for the event said, “It was really fun. We would definitely like to host it at Oregon State again, and hopefully expand it to reach more students.”
Two students of computer science in the College of Engineering at Oregon State University received National Science Foundation (NSF) Graduate Research Fellowships that will provide three years of research funding while they attend graduate school. This prestigious award recognizes and supports outstanding early career graduate students in science, technology, engineering and mathematics disciplines.
Christopher Mendez, a graduate student, and Alannah Oleson, an undergraduate, received the awards for research in the field of human-computer interaction (HCI). There were a total of eight students across the U.S. to receive the award for HCI research.
This prestigious award recognizes and supports outstanding early career graduate students in science, technology, engineering and mathematics (STEM) disciplines. A total of 2,000 fellowships are awarded per year across all STEM fields.
Both Mendez and Oleson are advised by Distinguished Professor Margaret Burnett who co-founded the area of end-user software engineering, which aims to improve software for computer users who are not trained in programming. Her current research investigates gender-neutral software, uncovering gender inclusiveness issues in software from spreadsheets to programming environments.
Mendez and Oleson are extending Burnett’s research into different areas: Mendez is investigating how technology can empower people of low socioeconomic status; and Oleson is researching how best to teach inclusive software design methods and principles to university-level computer science students.
Mendez is continuing his research with Burnett at Oregon State, and Oleson will be starting graduate school next fall at the University of Washington.
A team of six computer science students at Oregon State University competed for the first time and won the regional Department of Energy Cyber Defense Competition held at Pacific Northwest Laboratory in Richland, Washington.
The competition simulates a real-world situation in which the teams defend a corporate network infrastructure from professional hackers. Each team built a mock infrastructure including a web server, a file server, a database server, email, and other network operations. During the competition, a group of users utilized the services while the hackers launched attacks. The defending teams had to monitor and respond to the cyberattacks throughout the day and were scored on how well they defended their infrastructure and how well they documented what they had done.
The Oregon State team placed first among six teams from the western U.S. at the regional competition, and placed fourth nationally among 29 teams.
“The competition was a lot of work, but it was also a lot of fun,” said Zander Work, a freshman in computer science who led the team. “The team put in many long nights leading up to the competition to finish hardening our defenses, and it paid off.”
Zander and the other five students who competed — Aidan Grimshaw, Cody Holliday, Khuong Luu, Hadi Rahal-Arabi and Zach Rogers — are all members of the OSU Security Club.
“Although it was a very first time the students participated in such a competition, they did a great job,” said Yeongjin Jang, assistant professor of computer science in the College of Engineering who advised the team. “I was very happy to see the students working hard for an entire month of preparation, not hesitating to tackle difficult tasks, and working well as a team at the competition venue.”
For the past three years Oleson has been working with Margaret Burnett, Distinguished Professor of computer science in the College of Engineering, who studies human computer interaction. Oleson has worked on two different areas of research with Burnett: end-user programming and gender-inclusive software.
Oleson’s involvement has been extensive, including helping to plan and program the studies, debug procedures, collect and analyze data, and write up the results. She is co-author on six research papers and is one of the primary co-authors of a document describing the foundations of GenderMag, which is a software inspection process for programmers to uncover gender inclusiveness issues in software.
In the nomination letter for the CRA award Burnett wrote of Oleson: “In my 25 years as a faculty member, she is one of the very best undergraduate students I have seen.”
Danny Dig with his students and collaborators won four prestigious research paper awards at international conferences this year. Dig, an associate professor of computer science in the College of Engineering at Oregon State University, researches software engineering. His focus is on interactive program transformations that improve programmer productivity and software quality.
Distinguished Paper Award (awarded by ACM SIGSOFT at FSE ’17)
Mike Rosulek, assistant professor of computer science in the College of Engineering at Oregon State University, received a Visa Faculty Research Award to advance methods of customer privacy and fraud detection.
“We’ve known for several decades that cryptography can protect not just data at rest, but also data in use, at least in principle. Finally, in the last several years these cryptographic ideas have been improved to become truly practical,” Rosulek said.
Rosulek and his colleague at Visa, Payman Mohassel, will be working to improve a tool from cryptology called private set intersection, which allows two parties to find items in common on two separate lists without revealing any other information from the lists.
Their research will help make complicated queries faster to process. For example, a company may want to know how many customers they have in common with another company without revealing who those customers are.
The funds will support one graduate student for a year who will be helping to develop new prototypes that would make advanced cryptography practical for companies.
“This award demonstrates that industry leaders see the potential of advanced cryptography to protect data during use and solve real-world privacy challenges,” Rosulek said.
Three Oregon State University students working with the Jet Propulsion Laboratory received the Extreme Science and Engineering Discovery Environment (XSEDE) Startup Allocation based on their senior design capstone project.
Taylor Alexander Brown (computer science), Heidi Ann Clayton (computer science), and Xiaomei Wang (finance), also won the CH2M Multidisciplinary Collaboration Award at the 2017 Undergraduate Engineering Expo at Oregon State for their project called Coal and Open-pit surface mining impacts on American Lands (COAL).
The team created a system to process remote-sensing data to identify land surface types, coal mining operations, and the environmental impacts on water resources to help NASA’s Jet Propulsion Laboratory study the effects of coal mining on the environment.
The XSEDE award will allow the team to continue development on the project including the use of XSEDE resources for benchmarking, evaluation and experimentation. Funded by the National Science Foundation, XSEDE is a collection of integrated advanced digital resources and services.
“The availability and opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research,” said Lewis John McGibbney, data scientist at the Jet Propulsion Laboratory, and the client for the project.
“I am extremely proud of the team’s achievements and know that such endeavors set a high standard for each and every one of them as they progress further through their journey in higher education and beyond.”
Five students in the School of Electrical Engineering and Computer Science will be heading to Germany this summer to compete in the 2017 Rohde & Schwarz Engineering Competition. Their performance in the U.S. preliminary round earned them a spot at the world league competition.
Aaron Schraner, an electrical and computer engineering student, was motivated to compete since he participated last year on a team from the Oregon Institute of Technology that won the 2016 regional competition. Based on his experience there, he recruited Karen Harper for additional electrical engineering knowledge. All the other team members are in computer science: Braxton Cuneo, Erich Kramer, and Andy Tolvstad.
Their task was to make improvements to software for a digital-signal processing application that could ultimately make video streaming better. Specifically, they were asked to speed up the processing of the software-based DVB-T2-Coder, based on the open source GNU Radio project, while maintaining accuracy.
“Signal processing is traditionally very, very computationally intensive, so any optimizations you can get out of something like that are going to be very beneficial to your workflow,” Andrew Tolvstad said.
“There was one loop we optimized that was run about 1.2 million times,” Karen Harper agreed.
“Just by changing a data type that was 32-bits wide to one that was 64-bits wide, we took another 5 to 10 percent off the total amount of time it took to run the program,” Aaron Schraner said.
During the competition, students made improvements to the code that was then automatically compiled and tested for performance once they submitted it via Git. Rohde & Schwarz continuously published a leader board of the top performing teams so the teams could watch their ranking move up or down.
The team members are excited to have an all-expenses paid trip to Germany, and are squeezing the trip into very busy lives of classes and internships. They also have a chance to win $3,000 for the top prize, $1,500 for second place, and $750 for third place.
But the money was not the only objective.
“It’s been a lot of fun,” Tolvstad said. “Just the thrill of trying to take something and make it the best it can possibly be by just rearranging its parts.”
This final will be held in Munich, Germany at the Rohde & Schwarz headquarters. Rohde & Schwarz is a privately held company with over 10,000 employees worldwide, including a design center in Beaverton.
“Gadgets and Gizmos” was the theme for the first HWeekend of 2017 on January 20-22, jointly sponsored by the College of Business and the College of Engineering.
In just one weekend, forty-seven students from business and engineering designed, built, and pitched their idea for a marketable product including temperature based alarm clock, a computer controlled potato launcher, a 3-D printed longboard fender, and a self-playing guitar.
It was the seventh iteration of the popular event that provides students from different disciplines an opportunity to work together in teams. Students came from a variety majors including business, bioengineering, civil engineering, chemical engineering, computer science, electrical and computer engineering, environmental engineering, and mechanical engineering.
“This event is really cool, because I get to do things that I normally don’t get to do in my major,” said Alec Westbrook, a chemical engineering student who worked on the 3D printed longboard fender project. “I mean, how often can a guy that is mixing chemicals all day work with his hands and create something new?”
This event allowed students to make use of the new Buxton Hall Makerspace and Mastery Challenge lounge, which gave students access to 3-D printing, soldering irons, a drill press, laser cutting, and UV ink logo printing.
Mentors for this HWeekend included six industry members from Intel and two from Microsemi.
“People here are really excited about the things they are making,” said Aayush Pathak, a silicon architecture engineer from Intel who attended HWeekend as a mentor. “And to be a part of it and share what I have seen in my school and life — it’s a proud feeling.”
Staff from both the College of Business and the College of Engineering also helped mentor students through the creation and marketing of their projects.
“It’s an incredibly valuable partnership between business and engineering,” said Dale McCauley, the makerspace manager for the College of Business. “The students are getting the chance to build relationships that ordinarily wouldn’t form. If you get business students to understand how engineers think and vice versa, I think that is valuable.”
At the end of the weekend, the students received group awards for their dedication and hard work. The Executors award goes to the team that produces the best engineering execution of their idea to create the most polished final product, the Helping Hand is for the team that contributes the most to other teams, and the InnovationX Pitch awards go to two teams who had the best business pitches for selling their prototypes.
Award winners
Executor: Temperature Based Alarm Clock team. The team included members Noah Hoffman, Taylor Johnston, Alexia Patterson, and Abdurrahman Elmaghbub.
Helping Hands: Checkpoint team. The team included members Andrey Kornilovich and Graham Barber
InnovationX Pitch: Checkpoint team and Temperature Based Alarm Clock team.