Special call for proposals: Resilience research

Oregon Sea Grant invites proposals from researchers affiliated with any Oregon institution of higher education for research projects that address cutting-edge resilience questions related to important marine and coastal issues.The deadline for submission is Feb. 9, 2015, and a notice of intent to apply is required by Jan. 19.

Projects will be selected through an open, competitive, peer-review process. Proposed work begins July 1, 2015.

The total available funding is $100,000; proposals that request $50,000 or less will have a competitive advantage since we want to fund as many efforts as possible, all else being equal. Available funding is set by the NOAA Sea Grant Program based on congressional appropriations, and is subject to change and rescission.

Complete details and a downloadable RFP are available from the Oregon Sea Grant Website.

Biennial grant competition – call for preliminary proposals

Oregon Sea Grant invites preliminary proposals (pre-proposals) from researchers affiliated with any Oregon institution of higher education for research projects that address cutting-edge socioeconomic and biophysical science related to important marine and coastal issues.

Pre-proposals will be entered into a highly competitive review and selection process. Proposed work may begin on either February 1, 2016, or February 1, 2017. Individual requests for funding are not to exceed $115,000 per year. Available funding is set by the NOAA Sea Grant Program based on congressional appropriations, and is subject to change and rescission.

Pre-proposals are due to the Oregon Sea Grant office by 5 p.m. Friday, Feb. 13, 2105.

For full details, visit our Biennial Grant Competition page.

New study finds “saturation state” directly harmful to bivalve larvae

Hatchery-reared oysters (photo by OSU News & Research Communication)The mortality of larval Pacific oysters in Northwest hatcheries has been linked to ocean acidification, yet the rate of increase in anthropogenic carbon dioxide in the atmosphere and the decrease of pH in near-shore waters have been questioned as being severe enough to cause the die-offs.

However, a new study of Pacific oyster and Mediterranean mussel larvae found that the earliest larval stages are directly sensitive to saturation state, not carbon dioxide (CO2) or pH. Saturation state is a measure of how corrosive seawater is to the calcium carbonate shells made by bivalve larvae, and how easy it is for larvae to produce their shells.

It is important to note that increasing CO2 lowers saturation state, the researchers say, and saturation state is very sensitive to CO2; the challenge interpreting previous studies is that saturation state and pH typically vary together with increasing CO2. The scientists utilized unique chemical manipulations of seawater to identify the direct sensitivity of larval bivalves to saturation state.

Results of the study, which was funded by the National Science Foundation, are being reported this week in the journal Nature Climate Change.

“Bivalves have been around for a long time and have survived different geologic periods of high carbon dioxide levels in marine environments,” said George Waldbusser , an Oregon State University marine ecologist and biogeochemist and lead author on the study, “The difference is that in the past, alkalinity levels buffered increases in CO2, which kept the saturation state higher relative to pH.”

“The difference in the present ocean is that the processes that contribute buffering to the ocean cannot keep pace with the rate of anthropogenic CO2 increase,” added Waldbusser, who is in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.  “As long as the saturation state is high, the oysters and mussels we tested could tolerate CO2 concentrations almost 10 times what they are today.”

The idea that early bivalve development and growth is not as physiologically linked to CO2 or pH levels as previously thought initially seems positive. However, the reverse is actually true, Waldbusser noted. Larval oysters and mussels are so sensitive to the saturation state (which is lowered by increasing CO2) that the threshold for danger will be crossed “decades to centuries” ahead of when CO2   increases (and pH decreases) alone would pose a threat to these bivalve larvae.

Learn more

Oyster die-offs – a new culprit?

Oysters at Whiskey Creek hatchery

Oysters at Whiskey Creek hatchery

For years, research into West Coast oyster hatchery die-offs has pointed the finger at Vibrio tubiashii. Now Oregon State University researchers believe a different, but related, bacterium – V. coralliilyticus – may be the real culprit.

The findings were published in Applied and Environmental Microbiology, by researchers from OSU’s College of Veterinary Medicine, the U.S. Department of Agriculture, and Rutgers University. The research was supported by the USDA.

“These bacteria are very similar, they’re close cousins,” said Claudia Häse, an OSU associate professor and expert in microbial pathogenesis. “V. coralliilyticus was believed to primarily infect warm water corals and contributes to coral bleaching around the world. It shares some gene sequences with V. tubiashii, but when we finally were able to compare the entire genomes, it became apparent that most of what we’re dealing with in the Pacific Northwest is V. coralliilyticus.”

Scientists now say that V. coralliilyticus is not only far more widespread than previously believed, but that it can infect a variety of fish, shellfish and oysters, including rainbow trout and larval brine shrimp. And it appears to be the primary offender in bacterial attacks on Pacific Northwest oyster larvae.

Häse’s previous work with Chris Langdon of OSU’s Molluscan Broodstock Lab has been supported in part by Oregon Sea Grant, which has also worked with Northwest shellfish growers to help them rebound from oyster die-offs. By learning to counter the effects of increasingly acidic seawater, which prevents larval oysters from forming the shells they need to survive, many hatcheries have seen production return.

But while hatchery stocks are recovering, the scientists say bacterial infections remain a real problem for oysters – and other organisms – in the wild.

“Although we’ve largely addressed the problems the hatcheries face, these bacteria continue to pose threats to wild oysters,” Häse said. “And corals are still declining in many places, the Great Barrier Reef in Australia is dying at an alarming rate. Better diagnostics might help in all of these situations.”

Learn more

 

Estuary flooding may be more extreme than previously thought

OSU engineer is studying estuary flooding in the Coos Bay estuary (pictured here) and the Tillamook Bay estuary.

OSU engineer is studying estuary flooding in the Coos Bay estuary (pictured here) and the Tillamook Bay estuary.

New research suggests that intense storms could increase the impact of flooding in coastal estuaries. As more water is forced into the estuary, site-specific geographic features will cause more inundation in some parts of the estuary than others, contrary to the uniform rise that was previously expected.

Estuaries are mixing pots between rivers and the ocean – and also tend to be hotspots for human development. Tumultuous offshore waves that break during winter storms force water up into the estuary, causing it to inundate surrounding areas.

David Hill, a coastal engineer at Oregon State University, is studying how to more effectively measure the effects of flooding in estuaries along the Oregon coast.

“In Oregon, estuaries really represent a concentration of a great number of things,” Hill explained. “A concentration of infrastructure and a concentration of commerce. If you look where the population is, it’s all near estuaries.”

Historically, coastal managers have simply drawn a uniform circle around an estuary on a map to estimate flooding, and raised or lowered the line depending on predicted changes in water level. This method, although easy, neglects the complicated physics that take place in such environments.

Hill used historical storm data and future climate predictions to simulate the effect of storms on the Tillamook Bay estuary. His detailed models discovered that not all parts of an estuary are created equal.

“One thing that we found is that inside a large body of water like Tillamook Bay, there can be noticeable differences from one location to another. So the water levels in the whole bay are not the same. The northern part of the bay is more susceptible to higher water levels than the southern part.”

This new information is causing state flood maps to be updated and flood zones reevaluated. Hill says he is looking forward to working directly with coastal communities to find out what information is most useful in their planning.

Waves breaking offshore force water up into the estuary and cause flooding.

Waves breaking offshore force water up into the estuary and cause flooding.

“A big part of this project is wanting to actually connect with organizations within our study sites. They’re the ones that have the best idea of what kind of information is valuable to them and that they need to do short term and long term planning.”

The project is only six months into a two-year cycle funding and already two papers are close to being published; one paper is in press with the Journal of Coastal Research, and the second is in re-review with another journal.

While Hill is focused on the impact to coastal infrastructure, OSU ecologist Sally Hacker is researching what effect inundation will have on eelgrass habitat in the estuaries.

“Eelgrass is a critical habitat for commercially important fish and crabs,” Hacker explained. “We will be using models to project the extent of eelgrass under future sea level elevations.”

Hacker will incorporate Hill’s data into her models to better predict ecosystem changes along the coast.

Scientists say it is likely that storm events will become more frequent and more powerful in the future. Understanding the economic and ecological impacts of flooding will help coastal communities adapt in an ever-changing climate.

Learn more:

 

Floating transponders track tsunami debris path

Japanese transponderCORVALLIS, Ore. – Northwest anglers venturing out into the Pacific Ocean in pursuit of salmon and other fish this fall may scoop up something unusual into their nets – instruments known as transponders, released from Japan to track the movement of marine debris in ocean currents.

About the size of a 2-liter soda bottle, the instruments were intentionally set adrift from different ports off Japan in 2011-12 after the massive Tohoku earthquake and tsunami. Researchers from Tattori University for Environmental Studies in Japan have been collaborating with Oregon State University, Oregon Sea Grant, and the NOAA Marine Debris Program on the project http://www.kankyo-u.ac.jp/research/sri/field/002/results/trackinginfo.

Their goal is to track the movement of debris via ocean currents and help determine the path and timing of the debris from the 2011 disaster. An estimated 1.5 million tons of debris was washed out to sea and it is expected to continue drifting ashore along the West Coast of the United States for several years, according to Sam Chan, a watershed health specialist with Oregon State University Extension and Oregon Sea Grant who has been working with the Japanese and NOAA on marine debris research and outreach since the 2011 earthquake.

These transponders only have a battery life of about 30 months and then they no longer communicate their location,” Chan said. “So the only way to find out where they end up is to physically find them and report their location. That’s why we need the help of fishermen, beachcombers and other coastal visitors.

These bottles contain transmitters and they are not a hazardous device,” Chan added. “If you find something that looks like an orange soda bottle with a short antenna, we’d certainly like your help in turning it in.”

Persons who find a transponder are asked to photograph it if possible, and report the location of their find to Chan at Samuel.Chan@oregonstate.edu; or to the NOAA Marine Debris Program regional coordinator in their area at http://marinedebris.noaa.gov/contact-us. They will provide shipping instructions to persons who find the transponders so that the instruments can be returned to the research team.

Learn more

Pet owners, veterinary care professionals sought for national study

Pet supplies in shop windowScientists have long been aware of the potential environment impacts from using and disposing of the array of products we use to keep ourselves healthy, clean and smelling nice.

Now a new concern is emerging – improper disposal of pet care products and pills.

Dog shampoos, heartworm medicine, flea and tick sprays, and a plethora of prescription and over-the-counter medicines increasingly are finding their way into landfills and waterways, where they can threaten the health of local watersheds. An estimated 68 percent of American households have at least one pet, illustrating the potential scope of the problem.

How bad is that problem? No one really knows, according to Sam Chan, Oregon Sea Grant’s watershed health expert.

But Chan and his colleagues aim to find out. They are launching a national online survey of both pet owners and veterinary care professionals to determine how aware that educated pet owners are of the issue, what is being communicated, and how they dispose of “pharmaceutical and personal care products” (PPCPs) for both themselves and their pets. Pet owners are encouraged to participate in the survey, which will run through Dec. 15. 2014.

“You can count on one hand the number of studies that have been done on what people actively do with the disposal of these products,” Chan said. “PPCPs are used by almost everyone and most wastewater treatment plants are not able to completely deactivate many of the compounds they include.” …

Learn more

 

Demystifying modeling

Want to predict the population of a particular whale species 50 years into the future? There’s a model for that. Want to know exactly how much water is moving around one spot of the ocean at any given time? There’s a model for that too.

Modeling has a long history in science, and advancements in technology have significantly improved the capabilities in recent years. Yet, despite our fondness for some new technology – smartphnes, for instance – many people seem to greet scientific models with more skepticism than fascination.

To find out more about modeling and how it can help researchers, Oregon Sea Grant talked with some of the scientists we fund and collaborate with who specialize in modeling.

In its simplest form, a model is a mathematical way of estimating variables that can’t readily be measured in the field.

Selina Hepp3ll teaches teachersWhen laypeople express skepticism or mistrust about models, it may be that they’re nervous or uncertain about the arithmetic.

“Most people don’t think that they can do math,” said Selina Heppell, a Fisheries and Wildlife professor at Oregon State University who specializes in population models. “When in fact they can do math. They use math all of the time although they don’t necessarily realize that they’re doing it.”

Another way to think about a model is as a laboratory experiment where you hold one variable constant and see what happens to the others.

“The point of doing a lab experiment isn’t to know what’s going to happen in the real world, it’s to control factors that you can’t control in the real world so you can see the effect of a couple of variables,” explained Julie Alexander, a postdoctoral researcher studying aquatic invertebrates. “That’s the same goal of a model, to see the effect of variables that you can’t manipulate in the lab.”

MODELS FEEDING MODELS

If you were a scientist trying to study the presence of particular larvae in Yaquina Bay, you would need information on tides, currents and more. Many of these data can be found in come from existing models, and they are combined with field data to answer research questions.

Moreover, there is a tendency to add additional factors into your system (precipitation, for example) in an attempt to make the model more accurate. In fact, Heppell explains, this approach can make the models less reliable.

“Making a more complicated model adds more parameters which adds more uncertainty,” she said. “That uncertainty can be accounted for, but adding too many details that you don’t know much about can make the model hard to understand and not very useful.”

Each model has its own level of uncertainty based on the data that went into making it. That problem only expands as you combine multiple models with the uncertainty already present in your own data.

To account for this, scientists spend a lot of time analyzing model outputs to ensure the results are reasonable. Microbiology professor Jerri Bartholomew is the lead biologist in her lab studying pathogens, and she constantly checks that the data correlates with her prior knowledge of the species.

“I think transparency is very important. You have to be very honest about what you can say with your model,” she said, adding that her lab also calibrates its models annually against new field data to ensure accuracy.

PROJECTING THROUGH TIME

Technological advancements are improving our ability to reduce uncertainty and run multiple simulations in a short period of time. But new technology does little to help explain models to the general public or decision-makers.

 A large portion of Heppell’s work is reviewing the models used to set fisheries harvest regulations and explaining the outputs to fishermen and coastal leaders. As a modeler, she puts fish life cycle information into equations and simulations to show how various species will be impacted by new policies. She uses Microsoft Excel to help managers see how the model was created and how the outputs change with new information.

“The reason I use Excel is because it’s a platform that everybody has,” she said. “I create modeling tools that I can then give to a manager and they can manipulate it and look at what if this changes and what if that changes.

As models become more widely used in science, it’s important for those who make them know where the data came from, and for those who use them to understand their limitations. Whether field data or computer-generated values are fueling the model, the strength of the source makes all the difference in the usefulness of the model.

YOU ARE A MODELER

Let’s look at a simple model. The link below will take you to an Excel worksheet with information on whale populations. Through this model you can estimate changes in whale abundance over 50 years in the face of changing survival or reproduction affected by stressors like pollution, ship traffic and climate change. By tweaking simple variables such as lifespan and number of offspring, you will be able to see first hand how we can get a sense of the impact our policies have on animals with lifespans as long as your own.

You can find the model here: Modeling Practice

Confluence: Oregon communities respond to climate change

Confluence cover

Cover by artist Earl Newman

Climate change: Some people feel overwhelmed by it, others argue about it. Oregon Sea Grant researchers, Extension specialists and communicators, meanwhile are working to better understand what a changing climate is already doing to the ocean and coast – and helping coastal communities better prepare themselves for higher and more damaging waves, stronger storms, rising sea level and other anticipated changes.

The latest issue of OSG’s Confluence magazine examines some of the issues coastal Oregon faces, and ways in which Sea Grant is helping citizens and scientists address them, from anticipating the effects of climate change to building resilience in the face of them – and better understanding how people with different backgrounds and philosophies can even communicate about the topic.

Other articles in this issue include

  • Profiles of several Oregon Sea Grant Scholars, and how their student experiences in Sea Grant internships and fellowships helped prepare them for careers in marine science and public policy
  • A new app that helps coastal visitors identify critters they find on the beach – and contribute to citizen science by reporting them.
  • A study of how juvenile Dungeness crab move through coastal waters as they mature, and an exhibit at the Hatfield Marine Science Center that explains what scientists are learning, and how it might benefit the crab fishery.

Learn more