1. State why the following is true or provide a counter example.

 (a) If \(S \) is a subset of a vector space \(V \), then the \(\text{span}(S) \) equals the
 the intersection of all subspaces of \(V \) that contain \(S \).

 (b) Every vector space has a finite basis.

 (c) Every subspace of a finite dimensional vector space is finite dimensional.

 (d) If a \(n \times n \) matrix has rank \(n \) it is invertible.

2. Find a basis for the vector space of matrices of size \(3 \times 2 \).

3. Let
 \[
 A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.
 \]
 Find \(\det(A - tI) \) where \(t \in \mathbb{R} \) and \(I \) is the identity matrix.

4. For what real numbers \(t \) does the following system have a unique solution?
 \[
 \begin{align*}
 x_1 + tx_3 &= 1 \\
 2x_1 + x_2 - x_3 &= 1 \\
 x_2 + 2x_3 &= -3
 \end{align*}
 \]

5. Construct a \(3 \times 5 \) matrix with rank 2.

6. A matrix is a projection matrix if \(P^2 = P \). Find a nontrivial \(3 \times 3 \) projection matrix and show that it satisfies the definition. Let

7. Find a basis for the column space and null space of the matrix
 \[
 A = \begin{bmatrix} 2 & -2 & -3 & 0 \\ 3 & -3 & -2 & 5 \\ 1 & -1 & -2 & -1 \end{bmatrix}.
 \]

8. Is \(\{1 + 2x + x^2, 3 + x^2, x + x^2\} \) a basis for \(\mathbb{P}^2 \)? Show your work.

9. Compute the rank of
10. Let $V = \mathbb{R}^3$, $T(a, b, c) = (a + b, 2b - a, 2a + c)$, and $z = e_1$. Show that $\beta = \{z, T(z), T^2(z)\}$ forms a basis for V. We call β a T-cyclic basis.

Definition 1. Let T be a linear transformation from V to V and W be a subspace of V. The subspace W is T-invariant if $T(w) \in W$ for all $w \in W$.

11. Let $V = \mathbb{R}^3$, $T(a, b, c) = (a + b + c, a + b + c, a + b + c)$, and

$$W = \{(t, t, t) : t \in \mathbb{R}\}.$$

Is W a T-invariant subspace of V?

12. Let T be a linear transformation from V to V. Show $\text{Null}(T)$ is T-invariant.