Project 3 Update

by Jamie Minick odeq-report

The McCormick and Baxter Superfund Site is located on the Willamette River in Portland, Oregon and has PAH contaminated soils and sediments from historical creosote operations. As part of an Oregon Department of Environmental Quality (ODEQ) ten year study to assess the effectiveness of the sediment cap, passive sampling devices from Kim Anderson’s lab were deployed by U.S. EPA Region 10 divers in both sediment and water at the site. Included in this study was a newly designed passive sampling sediment probe which allowed for deployment in the rocky armoring of the sediment cap. Based on data from this study, the ODEQ reported that the sediment cap appears to be effective in meeting its remedial objectives.  The full results of the study, used to inform ODEQ regulatory decision making, is available here (https://semspub.epa.gov/work/10/100031136.pdf), beginning on page 20.

[The post is adapted from a story in the October 2014 issue of NIEHS Environmental Factor – written by Sara Mishamandani, research and communication specialist for MDB Inc., a contractor for the NIEHS Superfund Research Program and Division of Extramural Research and Training]

A tool to educate K-8 students about mercury in the environment and its effects on human health is now online, thanks to a collaboration between the NIEHS Superfund Research Program (SRP) at Oregon State University (OSU), the U.S. Environmental Protection Agency (EPA), and the London School in Cottage Grove, Oregon.MercuryLogoUpdated

The cooperative project was the first pilot for the Partners in Technical Assistance Program (PTAP), launched with the London School, located near the Black Butte Mine Superfund site in rural Cottage Grove, about 70 miles south of the university. The EPA Office of Superfund Remediation and Technology Innovation initiated the technical assistanceprogram in 2013 to help communities affected by Superfund sites understand technical information and to enable meaningful community involvement in the Superfund decision-making process.

During a Black Butte Mine community information session, London School principal Laurie Briggs requested that EPA create materials to teach students about the nearby abandoned mine, where mercury and other contamination from mine waste affect creeks that flow into the nearby Cottage Grove Lake and the Coast Fork Willamette River.  Listen to Laurie share about the project.

Screen Shot 2014-10-01 at 3.15.07 PMPutting environmental health into context

The educational package Mercury, the Community, and Me is available online as modules for K-8 teachers. The activities help connect students to the environment by defining environmental health, providing an overview of mercury and how it enters the environment and the food chain, and delivering information about mercury and human health. The resources include background information, presentations, worksheets, videos, games, and team assignments.

Two videos are also part of the curriculum. One provides more information about the Black Butte Mine Superfund site, including its historical background. The other introduces students to careers in science, highlighting scientists from the university and EPA. View the videos.

Fostering collaboration and engaging stakeholders

“EPA has a strong commitment to ensure that communities living near Superfund sites are informed and have opportunities to meaningfully engage in EPA actions to protect human health and the environment. This is a model educational project and partnership with OSU, London School, and EPA that brings together environmental health science, local history, and a Superfund site.”
~ Alanna Conley, EPA Region 10 Superfund Community Involvement Coordinator

“The excellent work done by the OSU SRP in collaboration with EPA and the London School in Cottage Grove demonstrates how the pilot PTAP can bring expertise and resources into communities near Superfund sites to meet technical assistance needs and enhance overall community restoration and cleanup.”
~ Melissa Dreyfus, lead for the EPA Headquarters PTAP Pilot

“The PTAP project provided a structure to build relationships with EPA Region 10 and impact a community living near a Superfund site. The final products also included contributions from our SRP trainees. We hope the educational resources are models for other schools and future partnerships.”  
~ Naomi Hirsch, OSU SRP Research Translation Core coordinator

The project has been well received, featured and shared widely on EPA social media platforms. In addition, the project was presented via a webinar to EPA Region 10 personnel.

Project Team from left Diana Rohlman (OSU SRP CEC), Alanna Conley (EPA, Region 10), Dan Sudakin (OSU SRP RTC), Laura Briggs (London School Principle), Naomi Hirsch (SRP RTC OSU). Not pictured: Corey Fisher (OSU SRP CEC), Melissa Dreyfus (EPA Headquarters Superfund Community Involvement Program), Kira Lynch, (EPA Region 10, Science and Tech Liaison), and Richard Muza (Region 10 - Black Butte Mine, Project Manager)
The Project Team from left Diana Rohlman (OSU SRP CEC), Alanna Conley (EPA, Region 10), Dan Sudakin (OSU SRP RTC), Laura Briggs (London School Principal), Naomi Hirsch (OSU SRP RTC). Not pictured: Corey Fisher and Molly Kile (OSU SRP CEC), Melissa Dreyfus (EPA Headquarters Superfund Community Involvement Program), Kira Lynch, (EPA Region 10, Science and Tech Liaison), and Richard Muza (Region 10 – Black Butte Mine, Project Manager)

Robyn Tanguay (Leader, Project 3, Director, Sinnhuber Aquatic Research Lab) traveled to California on April 29-20 for the Norcal SOT Spring Symposium .  Her presentation “Rapid In Vivo Assessment of Bioactivity in Zebrafish: High Content Data for Predictive Toxicology” was well received by scientists from the California Dept. of Pesticide Regulation, California EPA, and many others participating via the webcast.

Review and download slides from the event: http://www.slideshare.net/OSU_Superfund/tanguay-cal-epa
More images are shared by the California Dept. of Pesticide Regulation on Facebook.

This year the EPA Partners in Technical Assistance Program (PTAP) Pilot has launched the first project with a school located near the Black Butte Mine Superfund Site in rural Cottage Grove, Oregon.

“The overall objective of PTAP is to expand opportunities for cooperation between EPA and colleges, universities or nonprofits with the shared goal of assessing and addressing the unmet technical assistance needs of impacted communities. Through PTAP, colleges, universities, and nonprofit organizations cooperate with EPA and voluntarily commit to assist communities with their unaddressed technical assistance needs. At this time, PTAP is in the pilot phase, working with NIEHS Superfund Research Program grantees as PTAP pilot partners. Following this pilot phase, the intention is to expand this project so that any interested colleges, universities or nonprofits may also join the PTAP.”

OSU Superfund Research Program has begun a partnership with EPA through this Pilot to help them expand upon their community outreach capabilities surrounding the Black Butte site.

On December 18, 2013, we met with Laurie Briggs, the Principal of the London School, because she had a strong desire to give her students and their families’ science and environmental health knowledge. About 100 rural K – 8th grade students go to London school.

Our visit included getting to know one another, listening to the needs of the school, and a school tour. We were impressed with the beauty and organization. The school built and maintains a 1/4-acre organic garden, and has a trail to a river flowing behind the property.  72% of the students qualify for free/reduced lunch, and delicious healthy meals are cooked on site.

For this project, we plan to:

1) Maintain communication through monthly meetings, and share notes and project milestones on our web site. [Our next meeting is January 30th, 2014 at OSU.]

2) Address community and educational needs.

  • Create a hands-on, project-based integrated curriculum related to the science of the Superfund site and mercury contamination that can serve as a model for other rural, small schools.
  • Discuss ways to educate the students and community and expand and build a sustainable partnership.

3) Provide training opportunities for SRP Trainees wanting outreach experience.

4) Help students understand career opportunities in environmental and life sciences.

 

 

Project Team from left Diana Rohlman (OSU SRP CEC), Alanna Conley (EPA, Region 10), Dan Sudakin (OSU SRP RTC), Laura Briggs (London School Principle), Naomi Hirsch (SRP RTC OSU). Not pictured: Corey Fisher (OSU SRP CEC), Melissa Dreyfus (EPA Headquarters Superfund Community Involvement Program), Kira Lynch, (EPA Region 10, Science and Tech Liaison), and Richard Muza (Region 10 - Black Butte Mine, Project Manager)
The Project Team from left Diana Rohlman (OSU SRP CEC), Alanna Conley (EPA, Region 10), Dan Sudakin (OSU SRP RTC), Laura Briggs (London School Principal), Naomi Hirsch (OSU SRP RTC). Not pictured: Corey Fisher and Molly Kile (OSU SRP CEC), Melissa Dreyfus (EPA Headquarters Superfund Community Involvement Program), Kira Lynch, (EPA Region 10, Science and Tech Liaison), and Richard Muza (Region 10 – Black Butte Mine, Project Manager)

 

 

 

 

All are welcome to participate in the upcoming webinar. Please RSVP to Naomi Hirsch to get call-in information.

Next-generation air monitoring

By Gayle Hagler, PhD, U.S. EPA Office of Research and Development

Tuesday, December 10th, 12 noon PT,  3:00 pm ET

VillagegreenFINAL
Soon you will be able to lounge on a bench in a public setting and use your smart phone to get real-time data on the air quality around you. It’s all part of a project being co-led by EPA scientists Ronald Williams and Dr. Gayle Hagler.

Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a range of next-generation air monitoring (NGAM) technologies, with potential applications including supplementing regulatory air monitoring networks, fenceline monitoring of source emissions, and personal exposure assessment.

An example recent effort is the EPA Village Green Project – a solar-powered system incorporated into a park bench that measures fine particles, ozone, and meteorology and streams the data to a publically accessible website. EPA also recently led multiple workshops to stimulate collaboration among sensor developers and air monitoring participants, as well as supported technology development through sensor performance testing.

This presentation will provide an overview of emerging air sensing technologies and discuss challenges and opportunities for future air monitoring.

More information: