SRP Trainee Mitra Geier was able to attend The International Neurotoxicology Association and Neurobehavioral Teratology Society joint meeting last month with her Externship Award from the SRP Training Core. The aim of the Externship Award is to support opportunities for SRP trainees that will provide enhanced experiential learning activities that benefit the trainee’s career goals.

Networking and face-time with peers and scientists is an essential part of an Externship opportunity.  At the conference, Mitra was able to interact and formalize her connections with other trainees from five different SRP centers across the country, including students whose work involved epidemiology, cell culture, fish, and mammalian model systems.  She will be reporting back to the OSU SRP trainees at their monthly meeting about what she learned from the other trainees at the conference related to their Superfund Centers, their activities, and their interests.

Mitra was also able to attend sessions and interact with leading scientists. She attended sessions to learn about different methods for assessing neurotoxicity, including mechanistic and behavioral effects, especially in the context of how the different models can be used to approach similar questions.   Mitra attended the sessions on neurotoxicants in air pollutants and inhaled particles, which are particularly relevant to her research. There was also sessions related to neurotoxicology screening studies and non-mammalian models of neurotoxicity including fish studies that were highly applicable to her screening work in zebrafish. The sessions on epigenetics and the microbiome were not directly related to her work, but she found them very useful in her long-term research interest development.

Mitra Geier
Mitra Geier

 

 


Mitra Geier is a PhD student working under Dr. Robert Tanguay with Project 3: Systems Approach to Define Toxicity of Complex PAH Mixtures.

Mitra received her B.S. in Environmental Science from Western Washington University.  Her current research is focused on defining the developmental toxicity of parent and methylated PAHs, the neurobehavioral effects of these compounds during the embryonic stage and in adulthood, and the molecular pathways involved in these effects using the embryonic zebrafish model.

 

On May 20, 2015, Dr. Staci Simonich and Dr. Kim Anderson presented to the Oregon State Air Toxics Science Advisory Committee (ATSAC). This committee is part of State of Oregon Department of Environmental Quality (DEQ) Air Quality Division Environmental/Technical Services.clouds

ATSAC is currently setting ambient air benchmarks for PAHs, as well as diesel and particulate matter.

Dr. Simonich (Project 5 Leader) presented on”Monitoring PAHs in Ambient Air, the Big Picture.”  Dr. Anderson (Project 4 Leader) presented on “Challenges of PAH Analysis and Availability of Standards”.  Both provided an overview of their research programs, as well as addressed specific technical issues for the Committee.

Dr. Dave Stone (RTC Co-Leader), who is a member of ATSAC,  reiterated the value of both presentations, as well as the overall contribution of the Superfund Research Program at OSU in assisting the State on important public health and environmental issues.

This is an Oregon State University press release from 5-8-15 that shares about the collaborative research project of Project 1 and Core C – Biostatistics and Modeling.

– By Gail Wells, 541-737-1386, gail.wells@oregonstate.edu, on Twitter @OregonStateExt
Source: Susan Tilton, 541-737-1740, susan.tilton@oregonstate.edu
http://bit.ly/OSU_AgNews1542

CORVALLIS, Ore. – Scientists at Oregon State University have developed a faster, more accurate method to assess cancer risk from certain common environmental pollutants.

Researchers found that they could analyze the immediate genetic responses of the skin cells of exposed mice and apply statistical approaches to determine whether or not those cells would eventually become cancerous.

The study focused on an important class of pollutants known as polycyclic aromatic hydrocarbons, or PAHs, that commonly occur in the environment as mixtures such as diesel exhaust and cigarette smoke.

Dr. Susan Tilton
Dr. Susan Tilton

“After only 12 hours, we could predict the ability of certain PAH mixtures to cause cancer, rather than waiting 25 weeks for tumors to develop,” said Susan Tilton, an environmental toxicologist with OSU’s College of Agricultural Sciences.

For at least some PAH mixtures, the new method is not only quicker but produces more accurate cancer-risk assessments than are currently possible, she said.

“Our work was intended as a proof of concept,” said Tilton, who is also affiliated with the OSU’s multidisciplinary Superfund Research Program, a center funded by the National Institute of Environmental Health Sciences (NIEHS).

“The method needs to be tested with a larger group of chemicals and mixtures. But we now have a model that we can use to develop larger-scale screening tests with human cells in a laboratory dish.”

Such a method will be particularly useful for screening PAHs, a large class of pollutants that result from combustion of organic matter and fossil fuels. PAHs are widespread contaminants of air, water and soil. There are hundreds of different kinds, and some are known carcinogens, but many have not been tested.

Humans are primarily exposed to PAHs in the environment as mixtures, which makes it harder to assess their cancer risk. The standard calculation, Tilton said, is to identify the risk of each element in the mix – if it’s known – and add them together.

But this method doesn’t work with most PAH mixes. It assumes the risk for each component is known, as well as which components are in a given mix. Often that information is not available.

This study examined three PAH mixtures that are common in the environment – coal tar, diesel exhaust and cigarette smoke – and various mixtures of them.

They found that each substance touched off a rapid and distinctive cascade of biological and metabolic changes in the skin cells of a mouse. The response amounted to a unique “fingerprint” of the genetic changes that occur as cells reacted to exposure to each chemical.

By matching patterns of genetic changes known to occur as cells become cancerous, they found that some of the cellular responses were early indicators of developing cancers. They also found that the standard method to calculate carcinogenic material underestimated the cancer risk of some mixtures and overestimated the combined risk of others.

“Our study is a first step in moving away from risk assessments based on individual components of these PAH mixtures and developing more accurate methods that look at the mixture as a whole,” Tilton said. “We’re hoping to bring the methodology to the point where we no longer need to use tumors as our endpoint.”

Tilton collaborated on the research with Katrina Waters of the Pacific Northwest National Laboratory, and others. Their findings appeared in a recent edition of Toxicological Sciences.

The study was funded by NIEHS, which supports the Superfund Research Program, a multi-partner collaboration that includes OSU and PNNL.

Hi! My name is Cleo Davie-Martin, and I am a recent arrival from Dunedin, New Zealand. I am a new Post-doctoral Scholar in the Department of Environmental and Molecular Toxicology at Oregon State University working with Dr. Staci Simonich under Project 5 of the SRP.

Cleo Davie-Martin
Cleo Davie-Martin, PostDoc, Project 5

I obtained my B.Sc.(Hons) in chemistry and more recently, my Ph.D. in environmental and analytical chemistry from the University of Otago under the supervision of Dr. Kimberly Hageman and Dr. Yu-Ping Chin. My research investigated the local- and global-scale atmospheric distribution of organic contaminants, including pesticides and brominated flame retardants.

On my weekends, you are likely to find me backpacking through the mountains, camping under the stars, and/or exploring the coast (and when this beautiful weather ends… perhaps indoors on the climbing wall or playing badminton and squash).

blair teaching mcnary 2
Blair Paulik discussing toxicology in the classroom

Blair Paulik and Jamie Minick, both SRP Trainees working on their PhDs in Dr. Kim Anderson’s lab (Project 4), traveled to McNary High School in the Salem, OR area on April 10th to teach students about environmental pollution.

This opportunity was initiated when a teacher from McNary contacted the Community Outreach & Engagement Core of the Environmental Health Sciences Center (EHSC). The opportunity was then given to the Department of Environmental & Molecular Toxicology’s graduate student organization, TEAM Tox. This is a great way for grad students to get out into classrooms.

Blair and Jamie’s interactive presentation highlighted where environmental pollution comes from, why environmental pollution is of concern, how humans are exposed to pollutants, and how scientists at Oregon State University are studying pollutants in the environment.

Jamie Minick presenting on environmental pollutants.
Jamie Minick presenting on environmental pollutants.

Throughout the day, Blair and Jamie taught 129 high school students from six different classes including chemistry, biology, and environmental science. The students showed genuine interest in the subject matter, asking questions about specific environmental pollutants and about science and college in general.