THE POLLUTION INSIDE US
Toxicologists examine the chemicals of modern life.
By: Peg Herring, Oregon’s Agricultural Progress

Forty years ago, chemical pollution was the stuff that spewed from tailpipes, smokestacks, and sewers. Rivers burned, fish died, and forests withered under acid rain until Congress passed strict laws to curb the flood of manmade chemicals pouring into our waterways and atmosphere.

Man-made and naturally occurring chemicals pervade modern life. Here are a few that have been linked to human health problems.

However, 40 years ago there was little consideration of the chemicals that we were pouring into our bodies. The chemicals we use to sanitize our hands, package our foods, and keep our beds from going up in flames have seeped into our bodies in ways that were unimaginable a generation ago. Today, we are marinating in antibacterials, hormone disruptors, and flame retardants.

Man-made and naturally occurring chemicals pervade modern life. Here are a few that have been linked to human health problems.

“There are more than 80,000 man-made chemicals in existence today, and an estimated 2,000 new chemicals are introduced each year,” said Craig Marcus, a toxicologist at Oregon State University. “We encounter thousands of them every day, in food, kitchenware, furniture, household cleaners, and personal care products. And very few of them have been adequately tested for safety.” Continue reading

grilled meat

CORVALLIS, Ore. – Researchers at Oregon State University have discovered novel compounds produced by certain types of chemical reactions – such as those found in vehicle exhaust or grilling meat – that are hundreds of times more mutagenic than their parent compounds which are known carcinogens.

These compounds were not previously known to exist, and raise additional concerns about the health impacts of heavily-polluted urban air or dietary exposure. It’s not yet been determined in what level the compounds might be present, and no health standards now exist for them.

The findings were published in December in Environmental Science and Technology, a professional journal.

The compounds were identified in laboratory experiments that mimic the type of conditions which might be found from the combustion and exhaust in cars and trucks, or the grilling of meat over a flame.

“Some of the compounds that we’ve discovered are far more mutagenic than we previously understood, and may exist in the environment as a result of heavy air pollution from vehicles or some types of food preparation,” said Staci Simonich, a professor of chemistry and toxicology in the OSU College of Agricultural Sciences.

Dr. Staci Simonich, Project 5 Leader with the OSU Superfund Research Program
Dr. Staci Simonich, Project 5 Leader with the OSU Superfund Research Program

“We don’t know at this point what levels may be present, and will explore that in continued research,” she said.

The parent compounds involved in this research are polycyclic aromatic hydrocarbons, or PAHs, formed naturally as the result of almost any type of combustion, from a wood stove to an automobile engine, cigarette or a coal-fired power plant. Many PAHs, such as benzopyrene, are known to be carcinogenic, believed to be more of a health concern that has been appreciated in the past, and are the subject of extensive research at OSU and elsewhere around the world.

The PAHs can become even more of a problem when they chemically interact with nitrogen to become “nitrated,” or NPAHs, scientists say. The newly-discovered compounds are NPAHs that were unknown to this point.

This study found that the direct mutagenicity of the NPAHs with one nitrogen group can increase 6 to 432 times more than the parent compound. NPAHs based on two nitrogen groups can be 272 to 467 times more mutagenic. Mutagens are chemicals that can cause DNA damage in cells that in turn can cause cancer.

For technical reasons based on how the mutagenic assays are conducted, the researchers said these numbers may actually understate the increase in toxicity – it could be even higher.

These discoveries are an outgrowth of research on PAHs that was done by Simonich at the Beijing Summer Olympic Games in 2008, when extensive studies of urban air quality were conducted, in part, based on concerns about impacts on athletes and visitors to the games.

Beijing, like some other cities in Asia, has significant problems with air quality, and may be 10-50 times more polluted than some major urban areas in the U.S. with air concerns, such as the Los Angeles basin.

An agency of the World Health Organization announced last fall that it now considers outdoor air pollution, especially particulate matter, to be carcinogenic, and cause other health problems as well. PAHs are one of the types of pollutants found on particulate matter in air pollution that are of special concern.

Concerns about the heavy levels of air pollution from some Asian cities are sufficient that Simonich is doing monitoring on Oregon’s Mount Bachelor, a 9,065-foot mountain in the central Oregon Cascade Range. Researchers want to determine what levels of air pollution may be found there after traveling thousands of miles across the Pacific Ocean.

This work was supported by the National Institute of Environmental Health Sciences (NIEHS) and the National Science Foundation (NSF). It’s also an outgrowth of the Superfund Research Program at OSU, funded by the NIEHS, that focuses efforts on PAH pollution. Researchers from the OSU College of Science, the University of California-Riverside, Texas A&M University, and Peking University collaborated on the study.

[Credit: Oregon State University Press Release]

See video from KVAL news

Learn more about PAHs from the Superfund Research Program web site.

 

By Leah Chibwe, Project 5 Trainee

This past summer, through the KC Donnelly Externship Award Supplement, I conducted a collaborative research project at the University of North Carolina (UNC) in Chapel-Hill with Dr. Mike Aitken and Dr. Jun Nakamura.

Screen Shot 2013-10-25 at 2.42.10 PM
Leah Chibwe

The objective of my time at UNC was to learn the DT40 bioassay based on chicken cell lines and use it asses the toxicity of Polycyclic Aromatic Hydrocarbon (PAH)-contaminated soil after bioremediation. Though I was quite excited about the opportunity, I was initially intimidated about leaving the familiarity of the chemistry lab at Oregon State University (OSU) and flying cross country to immerse myself in the unfamiliar (and very sterile!) world of cells and assays. It was a definite humbling learning experience; working with living cells taught me just how much of a virtue patience is –something that has helped me develop personally and as a researcher.

The KC Donnelly Externship created a platform on which we were able to combine analytical chemistry, biological and environmental engineering, and toxicology to address a shared concern. I was really inspired by the integration of the different ideas and mindsets from the various fields as we developed this project.

Before the externship, I was analyzing PAHs in remediated soil samples. At UNC, I learned about the DT40 assay and actually got to see how a lab-scale bioreactor (meant to simulate ex situ bioremediation) operated. I feel I now have a better understanding of how bioremediation works and the toxicity concerns often associated with PAHs. The experience has really added more depth to my research at OSU.

The externship was a very intense three months, but I really believe it was a pivotal moment in my development as an environmental health scientist; and has made me more appreciative of my research project. I also just had a great time interacting with everyone at the UNC Superfund Research Program (SRP).