The work of OSU physics graduate student Lee Aspitarte was featured as a Scientific Highlight on the American Institute of Physics website. Lee’s recent experiments in Ethan Minot’s lab provide new insights about nanoscale pn-junctions. Nanoscale pn-junctions are a promising technology for maximizing the efficiency of light-to-electricity conversion.

Headshot of Oksana Ostroverkhova

Oksana Ostroverkhova has been chosen by the American Physical Society as their Woman Physicist of the Month for May 2017. The Woman Physicist of the Month is a program of the APS’s Committee on the Status of Women in Physics (CSWP). It highlights exceptional female physicists, recognizing their positive impact other individuals’ lives and careers.

Read the full article here.

https://www.aps.org/programs/women/scholarships/month/index.cfm

Bethany Matthews has been awarded the Ben and Elaine Whiteley Endowment for Materials Research Fellowship.  This endowment, established in 2007, provides support for materials research in the College of Science.

Ms. Matthews is a fourth-year PhD student working with Prof. Janet Tate. Her research involves the design, synthesis, and characterization of thin film semiconductors for the improvement of renewable energy applications such as solar cells, thermoelectrics (materials which can convert heat to usable energy), or piezoelectrics (materials which can convert a mechanical stress or push to a usable energy). These semiconductors are stabilized in higher energy states than they would normally be found in through alloying and appropriate temperature control to improve their properties and make them more suitable for devices. She is particularly interested in studying the microstructure (e.g. size, composition, structure, and orientation of crystals on a very small scale) of these materials by electron microscopy and learning how changes to that microstructure explain changes to properties on a much larger scale. This fellowship will allow her to study these materials and similar systems in greater detail at the microscopy facility at the National Renewable Energy Lab in Golden, Colorado and to explain anomalous property behaviors which, if they can be controlled, could greatly increase device efficiency.

Physics students and faculty have received a total of 7 SURE Science Awards.

The SURE Science Awards support an undergraduate student for a summer of research in a faculty member’s lab.

our student and faculty awardees are:

Cassandra Hatcher (Physics) in the Lazzati Group
Garret Jepson (Physics) in the Schneider Group
Michelle Zhou (Physics) in the Johns Lab (Vet-Med)
Youngmin Park (BB) in the Qiu Lab
Theresa Dinh (Biology) in the Sun Lab
Dublin Nichols (Physics) in the Minot Lab
Attila Varga (Physics) in the Hadley Group

Congratulations to all – we’re looking forward to hearing your reports at the end of the summer.

Bethany Matthews, a 4th-year graduate student in Prof. Janet Tate’s lab, has won a U.S. Department of Energy (DOE) Office of Science Graduate Student Research Award.  The award is for the proposed research project, “Microscopy Analysis of Metastable Heterostructural Alloys with Anomalous Piezoelectric Response”, to be conducted at the National Renewable Energy Laboratory (NREL) in Golden, CO during the summer and fall of 2017.

The award citation states that, “The SCGSR award is in recognition of outstanding academic accomplishments and the merit of the SCGSR research proposal, and reflects Bethany Matthews’s potential to advance the Ph.D. studies and make important contributions to the mission of the DOE Office of Science.” Congratulations, Bethany!

Bethany will work with Dr. Andrew Norman of NREL and also with Prof. Brian Gorman and Dr. Andriy Zakutayev, her collaborators in the DOE-funded Energy Frontier Research Center, the Center for Next-Generation Materials by Design. The EFRC members study metastable materials of many types, and Bethany’s role has been understanding metastable alloys.  Her developing interest in transmission electron microscopy, using OSU’s Electron Microscopy Facility under the guidance of Dr. Pete Eschbach, led her to submit a proposal to DOE to study metastable alloys with microscopists at NREL and Colorado School of Mines.

SPIE – the international society for optics and photonics has chosen Matt Graham as one of 10 Rising Researchers for 2017.  He will be honored at their meeting in Anaheim next week!

 

https://spie.org/conferences-and-exhibitions/defense–commercial-sensing/rising-researchers    has the story.

(Graham group member Hiral Patel received the poster award at SPIE last year. Go Micro-Femto group!)

A paper just published in Nature Communications by the Single-Molecule Biophysics Laboratory of Assistant Professor Weihong Qiu reports an unexpected mechanical property of a “motor” protein that offers new insights into how motor proteins help build and maintain the mitotic spindle, the American football-shaped macromolecular structures that animal and fungi cells depend on to ensure accurate chromosome segregation during cell division. Located inside cells, motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They interact with train-track-like structures called microtubules to transport cargos or exert forces.

[continued below]

The motor protein KlpA moves in one direction on a single microtubule track and switches to the opposite direction between a pair of microtubules. Illustration credit: Kuo-Fu Tseng, Oregon State University.
[click on image to see the motion] The motor protein KlpA moves in one direction on a single microtubule track and switches to the opposite direction between a pair of microtubules. Illustration credit: Kuo-Fu Tseng, Oregon State University.
In this study, Qiu and colleagues focused on a particular motor protein called KlpA, and used a high-sensitivity microscopy method to directly visualize the motion of individual KlpA molecules on microtubules. The Qiu team shows that, while all other KlpA-like motor proteins are believed to move in only one direction on the microtubule track, KlpA has a “reverse” gear that allows it to go in different directions. This enables KlpA to behave differently in when it is operating at different locations within the mitotic spindle. This research may open the door to understand the similar KlpA-like motor proteins in mammals that are implicated in cancer cell proliferation. Understanding the design principle underlying the bidirectional motion of KlpA may also guide the engineering of motor protein-based molecular devices for targeting drug delivery in a controllable manner.

Three Oregon State undergraduates went to the APS Division of Nuclear Physics conference in Vancouver BC in mid-October 2016.

Senior Evan Peters shows how to calibrate neutrino response in the MINERvA detector.
Senior Evan Peters shows how to calibrate neutron response in the MINERvA detector.

Undergraduates Gabe Nowak, Tymothy Mangan and Evan Peters gave posters on their work.  Dept. Head Heidi Schellman gave a talk and provided transportation.  All 3 students had won travel awards from the American Physical Society to cover their hotel costs.

Evan’s poster was placed with theoretical posters presented by students also working on neutrino scattering, leading to much discussion among the neutrino community.

img_3432
Tymothy Mangan showing his work from Los Alamos last summer.

Tymothy Mangan showed results from a test stand he built at Los Alamos National Lab last summer.

Gabriel Nowak presented preliminary studies of Lorentz invariance that he did as a SULI student at Jefferson Laboratory.

After the poster session we went on a tour of the TRIUMF nuclear laboratory at the University of British Columbia.

Touring the ARIEL facility at TRIUMF. This room will be filled with equipment very soon.
Touring the ARIEL facility at TRIUMF. This room will be filled with equipment very soon.