A paper just published in Nature Communications by the Single-Molecule Biophysics Laboratory of Assistant Professor Weihong Qiu reports an unexpected mechanical property of a “motor” protein that offers new insights into how motor proteins help build and maintain the mitotic spindle, the American football-shaped macromolecular structures that animal and fungi cells depend on to ensure accurate chromosome segregation during cell division. Located inside cells, motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They interact with train-track-like structures called microtubules to transport cargos or exert forces.

[continued below]

The motor protein KlpA moves in one direction on a single microtubule track and switches to the opposite direction between a pair of microtubules. Illustration credit: Kuo-Fu Tseng, Oregon State University.
[click on image to see the motion] The motor protein KlpA moves in one direction on a single microtubule track and switches to the opposite direction between a pair of microtubules. Illustration credit: Kuo-Fu Tseng, Oregon State University.
In this study, Qiu and colleagues focused on a particular motor protein called KlpA, and used a high-sensitivity microscopy method to directly visualize the motion of individual KlpA molecules on microtubules. The Qiu team shows that, while all other KlpA-like motor proteins are believed to move in only one direction on the microtubule track, KlpA has a “reverse” gear that allows it to go in different directions. This enables KlpA to behave differently in when it is operating at different locations within the mitotic spindle. This research may open the door to understand the similar KlpA-like motor proteins in mammals that are implicated in cancer cell proliferation. Understanding the design principle underlying the bidirectional motion of KlpA may also guide the engineering of motor protein-based molecular devices for targeting drug delivery in a controllable manner.

Oksana Ostraverkhova has won the Milton Harris Award in Basic Research!!!

She was honored (and surprised!) at a ceremony on October 17 at the Horizon Room.

In her ten years at OSU, Oksana has built a successful program demonstrating creative and productive basic research in the study of photophysics in organic semiconductors.  She has  also collaborated with Prof. Sujaya Rao (entomology) to study bee color vision. This interdisciplinary collaboration has led to while new insights in the basic science field of bee color vision.

Oksana also won the Harris Graduate Teaching award this year and has supervised dozens of undergraduates and graduate students in her lab.

About the award:

This award was endowed by G. Milton Harris, a Portland native who received his bachelor’s degree in 1926 from OSU and his PhD from Yale. He was a pioneer in polymer, fiber and textile science and was founder and for many years president of Harris Research laboratories which later became part of Gillette. His distinguished career in chemistry included service with the National Bureau of Standards and five years as the chair of the American Chemical Society.

The purpose of the Harris award is to recognize exceptional achievement in basic research by honoring an outstanding faculty member in the College of Science. Special consideration is given to recent research that was carried out at OSU and that will have a significant impact on its field. The recipient of the Harris award not only receives a monetary award, but also is given the opportunity to present a public lecture that highlights his or her research.

 

Andrew Stickel wearing a Swedish Doctoral hat.
Andrew Stickel wearing a Swedish Doctoral hat.

On University day, our own Andrew Stickel will receive the University wide Herbert F. Frolander Award for Outstanding Graduate Teaching Assistant!

University Day is Monday, September 19th and there will be an awards ceremony at the LaSells Center.

Andrew recently defended his dissertation “Terahertz Induced Non-linear Electron Dynamics in Nanoantenna Coated Semiconductors at the Sub-picosecond Timescale”. Please congratulate him on both of these accomplishments!

We just heard that Corinne Manogue is the APS Woman of the Month

August 2016 Woman of the Month: Corinne Manogue, Oregon State University 

Corrine Manogue
Corrine Manogue

Corinne Manogue obtained her Ph.D. in physics from the University of Texas at Austin in 1984. She studied black holes with Denis Sciama and field theory in curved spacetime with Bryce DeWitt, and joined the physics faculty at Oregon State University (OSU) in 1988 after postdoctoral positions at the Institute for Advanced Study at Princeton, the University of Durham in England, and as an Indo-American Fellow of the Comparative and International Education Society. Professor Manogue played a key role in the early work relating division algebras and supersymmetry. In her infinite free time, she continues explore how to use the octonions to describe the symmetries of high-energy particle physics.

Since its inception in 1996, Professor Manogue has been the driving force behind the Paradigms in Physics project at OSU, a complete redesign of the physics major. This redesign involved both a rearrangement of the content to better reflect the way professional physicists think about the field and also the use of a number of interactive pedagogies that place responsibility for learning more firmly in the hands of students.

Her curriculum development/research interests are in helping students make the difficult transition from lower-division to upper-division physics. Professor Manogue is the recipient of a number of teaching awards, among them the 2008 David Halliday and Robert Resnick Award for Excellence in Undergraduate Teaching from the American Association of Physics Teachers.  She was voted a Fellow of the American Physical Society in 2005 and named a Fellow of the American Association of Physics Teachers in 2014. After more than three decades in her career, she continues to be amazed to find herself a physicist.

Mateus Carneiro in the neutrino lab worrying about meson exchange currents.
Mateus Carneiro in the neutrino lab worrying about meson exchange currents.

Please welcome Mateus Fernandes Carneiro who has joined the Schellman neutrino group as a postdoctoral scholar.  Mateus just completed his dissertation “Measurement of Muon Neutrino Quasi-Elastic Scattering on a Hydrocarbon Target at Enu of 6 GeV” at the Centro Brasileiro de Pesquisas Fisicas using the MINERvA neutrino detector at Fermilab.  He will be working with Heidi Schellman and Amit Bashyal on studies of neutrino cross sections.  Mateus will be working from Fermilab most of the time but will visit us frequently.

Hiral Patel and Kyle Vogt are Physics Ph.D. students in the Graham Lab.  Both contributed to a major conference called CLEO in San Jose (4,600 attendees) that is sponsored by APS, OSA and IEEE.  Kyle presented his paper as a talk.   Hiral’s poster received the highest traffic and the most votes, and the Optical Society of America awarded her the “Outstanding Student Poster Presentation Award” from the OSA Optical Material Studies Technical Group.

cloecert

The Department of Physics is proud to announce that four undergraduate students are recipients of the Summer Undergraduate Research Experience in Science (SURE Science) Scholarships. Jeremy Meinke will be working in Prof. Weihong Qiu’s Lab to determine how OsKCH2 –a nanometer-sized biological motor protein– moves on the filamentous microtubule track using high precision single-molecule microscopy. Mirek Brandt and Ikaika Mckeague-McFadden will be working in Prof. Matt Graham’s Lab on the novel electronic and optical properties of two-dimensional and organic materials. Katelyn Chase will be working in Prof. Bo Sun’s lab to develop microfludics endothelium-on-chips devices for studying the collective endothelium shear stress sensing during embryo development. Many thanks to the College of Science and to the scholarship donors that made theses full-time summer-Science research scholarships possible.