Steven Ellefson graduated from Oregon State University in 2014 with a B.S. in

Physics Alumnus Steven Ellefson with with the ViewRay (the world’s first MRI-guided radiation therapy system) and the ArcCHECK-MR (a diode array used for radiation dosimetry measurements of complex therapy plans) that he worked on for his dissertation at UW Madison.
Physics Alumnus Steven Ellefson with with the ViewRay (the world’s first MRI-guided radiation therapy system) and the ArcCHECK-MR (a diode array used for radiation dosimetry measurements of complex therapy plans) that he worked on for his dissertation at UW Madison.

Radiation Health Physics and a minor in Physics. While at OSU, Steven did computational radiation physics research with Dr. Todd Palmer in the School of Nuclear Science and Engineering, completed a summer internship in medical physics at the Samaritan Regional Cancer Center, and was awarded the School’s Lower Division and Upper Division Student of the Year Awards in consecutive years.

After graduation, Steven went on to the Medical Physics graduate program at the University of Wisconsin-Madison, where he focused on the physics of radiation therapy. As a graduate student, Steven researched issues with using the ArcCHECK, a commercial silicon diode array widely used for radiation dosimetry of complex radiation therapy plans, for dosimetry on the ViewRay, the world’s first MRI-guided radiation therapy system. His research on the anomalous behavior of the ArcCHECK device under the influence of the ViewRay’s large magnetic field was presented at the annual conference for the American Association of Physicists in Medicine in 2015 and is currently under review for publication in the Journal of Applied Clinical Medical Physics.

Steven graduated from the University of Wisconsin-Madison in 2016 with his M.S. in Medical Physics and, through a competitive application process, was chosen for the Medical Physics Residency Program at the Mayo Clinic in Phoenix, Arizona, which he is currently attending.

Steven says the fundamental problem-solving skills and ability to think outside the box developed in the Physics program at OSU were essential to his success.

He points out some special courses here.

“K.C. Walsh and the general calculus-based physics sequence: Dr. Walsh made the fundamental concepts so easy to grasp and his enthusiasm is contagious. He was able to simultaneously encourage and challenge me to be a better physicist. He was also always willing to talk about interesting extracurricular physics problems and even try to work them out if a student requested (such as why a motorcyclist will turn into or away from a corner depending on the speed).

“Dr. Tevian Dray and Vector Calculus II: I feel that I did not truly understand calculus until I took Tevian’s class. Taking his class made a collection of seemingly unrelated facts about calculus learned in previous courses coalesce into a singular paradigm in my brain. I am very thankful for his dedication to helping physicists and engineers understand vector calculus and the integral (no pun intended) role it plays in describing the physical world.”

“Dr. Corinne Manogue: While Corinne is amazing at teaching, what I remember most is her encouragement of students. She truly tries to bring out the best in students and challenges them to be better than they think they can be. I will never forget her telling us all before a final that our performance on the test does not determine our value as human beings.”

“Last but not least, Dr. David Roundy’s computational physics course was a great preparation for graduate school. So many problems are approached with computers today that being able to translate theories/models into a computer program ended up being an essential skill for me.”

 

Print Friendly, PDF & Email

Comments are closed.