Assistant Professor Brian Fronk researches thermal energy systems and heat transfer in the domains of both applied and fundamental science. Among his primary aims is to develop technologies to make renewable energy economically competitive with fossil fuels. Fronk also conducts fundamental research in two-phase flow, phase change heat transfer, and supercritical heat transfer processes. He is the director of the Thermal Energy Systems and Transport (TEST) Lab, which is equipped to conduct coupled experimental and computational investigations, with an end goal of developing high-impact, economically feasible energy systems. Fronk calls sustainable energy and water systems among the most critical challenges of the 21st century.

“Ultimately, all the work we’re doing is to improve the efficiency of energy conversion processes, with the goal of saving energy and reducing emissions,” he said. One of the keys is reducing energy consumption in our everyday lives, such as the energy required to heat water and to heat and cool interior spaces, which account for a sizeable proportion of the country’s energy demands.

Fronk joined Oregon State in 2014. After receiving his B.S. in Mechanical Engineering in 2005 from Penn State University and his M.S. from the Georgia Institute of Technology, he joined Carrier Corporation, where he worked in areas of CO2 compression and transport refrigeration. After earning his master’s degree, Fronk had not seriously considered joining the ranks of academia, but after some time in industry he missed doing research, so he returned to Georgia Tech for his Ph.D., which led him to OSU.

In one of his current research projects, he is part of a multidisciplinary team, funded by the U.S. Department of Energy (DOE) to improve the efficiency of high-temperature solar thermal power. Typical rooftop solar panels convert sunlight directly into electricity. But on a large scale, such systems are usable only during daylight, because storing the electrical energy generated by photovoltaic cells in batteries is still expensive. In a solar thermal power system, mirrors focus sunlight on fluids (such as molten salts) or gasses (such as carbon dioxide), heating them to extraordinarily high temperatures. That thermal energy can be stored more cost effectively than electric energy and tapped around the clock. But solar thermal power is not yet cost competitive with alternatives such as natural gas or coal, which is something Fronk hopes to change. “We’re looking at very small channels, or flow pathways, to get more efficient heat transfer, which means we could make solar receivers — where the sunlight is focused — smaller and more efficient, and that would mean significantly lower system costs,” he said. “That would directly decrease the cost of electricity associated with concentrated solar power. Once the price is on par with fossil fuel alternatives, it will make economic sense to start building these plants on a large scale.”

In other work funded by NW Natural and the DOE, Fronk is working to improve the efficiency of systems that heat water and which heat and cool interior spaces — all of which are enormous energy drains in the United States. “A lot of my work has applications in the building industry,” he said. “Reducing the energy demand related to heating and cooling by just a few percent will translate to huge energy savings nationally.”

Fronk is also conducting fundamental science, funded by the NSF, in which he seeks to better understand the heat transfer mechanisms in supercritical fluids — fluids at such high temperatures and pressures that they exist as neither distinctly liquid nor distinctly gas. His particular interest in supercritical fluids is using them to support high-temperature solar power plants, and possibly for cooling high-power electronics.

In high school, Fronk thought he’d become an investment banker. But that changed for good when he worked with his father (an engineer) to restore a 1968 Pontiac GTO. “Seeing the engine in pieces and understanding how they all fit together to create something greater was intriguing and really got my interest.” he said.  Additional experiences as an intern with General Motors and at a Shell oil refinery offered him additional perspectives on engineering, and particularly about energy production and use, which helped to cement his desire to explore energy-related fields.

Some of Fronk’s greatest career satisfaction comes from working with his graduate students. He gets a particular boost from watching them publish papers and present them at conferences. “I enjoy watching the students grow,” he said. “My proudest moments come when sitting in the audience and seeing one of my students present their work well. That’s as good as it gets. I’ve also involved undergrads in our research, and it’s exciting to see them grow and take ownership of the projects.”

He encourages students at all levels to communicate their goals to faculty members and take advantage of their office hours. “They can benefit a lot by spending a little time getting to know their teachers,” Fronk said. “It helps to make a big place like this feel smaller and it can make their time here much more rewarding. I like to get to know my students — who they are and why they’re here. And if I know what a student’s ambitions are, I can keep my eye out for opportunities that come across my desk.

— Steve Frandzel

Assistant Professor Javier Calvo-Amodio is an industrial engineer who specializes in engineering management. As director of the Change and Reliable Systems Engineering and Management Research Group, he applies systems thinking and systems engineering methodologies to design reliable management processes that maintain robust organizational structures to meet the constantly shifting demands of globalization and other agents of change. “I want to create processes within organizations that allow them to face change comfortably and effectively,” he said, adding that systems thinking in engineering focuses on the interactions between human elements and technical and managerial systems.

Through his work, Calvo-Amodio aims to help organizations create working cultures that balance technical and human needs—a factor he thinks is often overlooked in engineering practice. From a practical standpoint, that means providing organizations a framework for success when they implement continuous process improvement methodologies. “The right conditions must be set up for such major changes to succeed,” Calvo-Amodio explained. His approach can be applied to any organization with complex management structures, whether they’re in manufacturing, healthcare, government, or other fields.

Calvo-Amodio joined Oregon State in 2012 after earning his Ph.D. in Systems and Engineering Management from Texas Tech University. He received his B.S. in Industrial and Systems Engineering from Tecnológico de Monterrey, Toluca, Mexico in 2000 and went to work in the private sector before continuing his education. In 2002, he earned a M.Sc. in business management from the University of Hull in the U.K., then served in several engineering management positions before starting his Ph.D. studies in 2007.

In current research, funded by the Oregon State Athletics Department, Calvo-Amodio is working with Ean Ng, research assistant professor and engineering management program director in the School of Mechanical, Industrial, and Manufacturing Engineering, to streamline travel for the university’s intercollegiate athletic teams. “We have 18 official teams,” he said. “Each one arranges travel separately, sometimes even when they’re headed to the same place. That leads to higher expenses for transportation and lodging, and longer travel times.” By taking a systems approach, Calvo-Amodio intends to help the Athletic Department coordinate team travel more effectively and enable it to, for example, negotiate better rates with hotels and transportation services. Refining the current travel system also promises to improve student welfare by cutting down on overall travel time, which means improved class attendance and study time and more adequate sleep.

Calvo-Amodio is also working with Boeing Portland to develop a daily cadence production system to improve the company’s rate of production. By applying systems engineering and engineering management principles, Boeing Portland will be able to increase productivity without disrupting its existing manufacturing process or corporate culture. The project is so complex that Calvo-Amodio spent the first two years (of what will likely be a five-year process) to understand and quantify the dynamic behavior of the company’s manufacturing system— particularly worker expectations about their roles. Only then could he move on to developing solutions.

He is also collaborating with colleagues in the College of Engineering to help the Oregon Department of Transportation calculate the agency’s return on investment for advanced engineering technology. ODOT will present the findings next year to the state legislature when it makes its annual case for funding.

Beyond his research, Calvo-Amodio develops lessons for Oregon State’s SMILE (Science Math Interactive Learning Experience) program, which exposes underserved Oregon middle school and high school students to STEM fields.

Calvo-Amodio grew up around engineers and recalls the thrill of visiting huge civil construction sites such as roads, bridges, and dams. Always mechanically inclined, he knew early on that engineering would be a good career fit. By adding a graduate business degree to his credentials, he created an ideal platform from which to address both the technical and managerial challenges of engineering. But he never expected to join the ranks of academia.

While pursuing his Ph.D., he learned (much to his surprise) that he enjoyed teaching and conducting research. “I once thought I would never become a professor, because I didn’t like teaching,” he said. “I was very wrong. I really enjoy the relationships that I build with students, and I get a lot of satisfaction from seeing them grow and watching them get back and keep going when they stumble.” He describes himself as a tough, but fair, teacher. “I’m a no-nonsense guy and I make my expectations clear at the start of a course, but I’m also very supportive,” he said. “If I see students learning, that’s what’s most important. Teaching the technical material in class is the easy part. The hard part is getting to know students personally and helping them develop as people and professionals.”

In 2016, Calvo-Amodio was named as the International Society for the Systems Sciences (ISSS)

representative to the International Council of Systems Engineers. He is also a member of the ISSS systems research team, which is currently working on the Systems Literacy Project to redefine what systems sciences and systems thinking is and where it’s headed. At Oregon State, his Capstone design team won the 2016 Student Learning and Success Teamwork Award.

— Steve Frandzel


Bryony DuPont joined the School of Mechanical, Industrial, and Manufacturing Engineering as an assistant professor in 2013. She is now one of seven faculty members who make up the largest academic mechanical engineering design research group in the nation.

It’s called the OSU Design Engineering Lab, and DuPont brings her computational expertise in design automation with a laser focus on the long-term environmental impacts of early design decisions. Although these impacts often don’t manifest until very late in a product’s lifecycle, early design decisions can play a critical role in everything from recyclability to water conservation to energy consumption.

DuPont and her students tap artificial intelligence, machine learning, and algorithms to develop methods and computational tools for improving the design process so products are better for the planet – from cradle to grave.

“All our work is computational – system optimization, algorithm development, and machine learning, and the main focus is tackling green problems,” DuPont said. “We do a lot of work in renewable energy and energy systems and a lot on the environmental impact of consumer products – how people use and interact with consumer products and how this affects environmental sustainability.”

One of DuPont’s research projects is aimed at helping design engineers understand the long-term environmental implications stemming from the decisions they make very early on in the design process. This focus on early design decision-making for environmental impact is relatively new, for several reasons. Not only has environmental design often taken a back seat to profits, but reliable data has been lacking, or non-existent.

“Most engineers don’t know where to start when it comes to designing to reduce environmental impacts, because there are currently no methods to help you during the early design phase – right when you’re getting started,” DuPont said. “So we’re creating some of the first data sets and computational tools that will change that.”

One of the tools is a web-based, quiz-like decision engine that asks engineers a series of key questions early on – questions ranging from power supply to whether or not plastic parts can be made from materials that qualify for the most common recycling symbols (1 and 2).

“If you’re using 12 different materials but only some are recyclable, or you can’t disassemble the product to extract the recyclable materials, or if batteries will need replacement every few weeks, our system will call that out.,” DuPont said.

DuPont and her students are also developing a repository to address the lack of data available to design engineers.

“We’ve created a repository of 47 products with 26 different environmental impact metrics, and we’re adding to it all the time,” DuPont said. “It’s a component-by-component analysis of what products are made of, how they’re made, and the environmental impacts of each component.”

DuPont is using machine learning to find the correlation between the decisions a designer makes and the environmental impacts that result from those decisions.

She’s also applying her computational expertise to improve the ability of the power grid to more efficiently accommodate renewable energy and to determine if offshore energy systems, like floating wind farms, might work well on the Pacific coast.

During a $160,000 research project sponsored by the U.S. Dept. of Energy’s National Energy Technology Lab, DuPont optimized the Oregon and Washington power grid and pointed out ways of managing the power that have the potential to cut the cost of energy by almost 18 percent.

Some of her students are working on another research project that is simulating floating wind systems off the coast in order to analyze the cost and biological impacts of floating wind turbines and the potential impact on energy costs in Oregon.

“That one is a fun and very, very challenging problem, but these students are at the forefront of it,” said DuPont, who is seeing an uptick in interest from women in this area of engineering. “I have so many great students exited to do this work, in part because they can see how they can apply the work to big, save-the-world issues.”

— Gregg Kleiner

Julie TuckerAfter completing her Ph.D. in nuclear engineering at the University of Wisconsin-Madison, Julie Tucker worked in industry for five years as a lead scientist, helping design nuclear submarines and aircraft carriers at a government-owned, contractor-operated power lab in Schenectady, New York.

As time went by, however, Tucker realized the work she was doing wasn’t as fulfilling as she wanted.

She had taught a course or two at her workplace, and she enjoyed research, so she decided to send her CV to a number of universities, knowing the competition for tenure-track faculty positions was fierce.

“I figured if I got lucky, I might get one interview, learn some things, and then apply again in the future,” Tucker said.

It turns out Tucker got four interviews and a few job offers. She selected the College of Engineering at Oregon State, in part for the sense of community she found among the faculty and staff of its School of Mechanical, Industrial, and Manufacturing Engineering (MIME).

“Now I absolutely love my job,” said Tucker, who has been at Oregon State three years. “It’s definitely my calling, and the great culture and community here in the school really helps, too.”

The 50-plus MIME faculty — half of whom are new assistant professors — have a weekly happy hour and other ways to connect so that Tucker has felt connected and well supported from day one.

“As new faculty, we’ve gotten a tremendous amount of support, and I’m passing that on to the new people coming in,” she said.

Instead of working on submarines and aircraft carriers, Tucker’s research now impacts everything from CO2 emissions to the materials used in Leatherman multi-tools.

“It’s a lot of fun,” she said.

At the heart of Tucker’s research interest is the study of metals and other materials that can survive in extreme environments. “If we can understand why they break down, we can design materials that don’t,” she said.

For the Leatherman project, Tucker and her students are testing a range of new alloys that offer both corrosion resistance and strength for tools used in harsh marine environments and exposed to seawater. Her research for this project is funded by Leatherman Tool Group Inc. and the Oregon Metals Initiative.

“My students love applied research like this,” Tucker said. “It’s super sexy and they dream about working at a company like Leatherman.”

Another research project has Tucker and her students figuring out the best materials to use in the high-temperature, high-pressure environments of next-generation power plants that will use CO2 to drive turbines instead of steam.

These plants will cost less to construct because the turbines can be an order of magnitude smaller in size, requiring less energy input to produce the same amount of power. But researchers don’t yet know for sure how the CO2 will react with the material containing it.

“We’re basically helping figure out what you make the new power plants out of,” Tucker said. “Fossil fuel plants are interested, because they can also sequester their CO2 emissions.”

Total funding for this project is close to a million dollars, coming from the U.S. Department of Energy, Idaho National Laboratory, and a private company in Turkey.

Tucker also has a research project focused on improving the materials used to hold uranium fuel pellets at nuclear power plants. During the Fukushima power plant accident, the zirconium metal that holds the fuel became so hot it triggered a chemical reaction, which lead to a hydrogen explosion that released radiation. Tucker and her team are exploring silicon carbide, a ceramic, as an alternative to zirconium-based fuel cladding.

Tucker recently won a prestigious NSF CAREER Award, accompanied by $522,000 in funding, for her proposal to study alloys kept in service for many years at temperatures from 200-500 degrees Celsius – a range where temperature effects are very low in the short run but become significant over time. Knowledge of how alloys behave in this middle range of temperatures are essential in many important industries, including the aerospace, energy production, and petrochemical industries. As the materials degrade, their ability to perform as designed is compromised, which can lead to safety hazards. But because degradation can take decades, laboratory studies are impractical because they could last years. Tucker proposes to use radiation to accelerate the alloy degradation process, thus making laboratory evaluation feasible.

“We expect to be able to use this knowledge to design new alloys that are better suited to resist long-term thermal degradation,” said Tucker.  The award goes into effect in June 2017.

Tucker won the Young Leaders Professional Development Award from the Minerals, Metals and Materials Society in 2016 and the Young Scientist Award from the Knolls Atomic Power Laboratory in 2010.

She sums up both her research and teaching philosophy in two succinct sentences: “I bring real life examples into the classroom and lab so my students see why this might matter. And I try to create a supportive, caring environment in which students can thrive.”

— Gregg Kleiner

Kyle NiemeyerKyle Niemeyer, assistant professor of mechanical engineering, develops advanced numerical methods for computational modeling of combustion and reactive flows. Recent research includes the advancement of tools and algorithms for graphics processing units that increase the accuracy and detail of chemical models in combustion simulations. Other research interests include computational modeling of multi-physics flows for applications in aerospace, transportation, and energy systems. Niemeyer’s research group develops numerical methods that researchers can use to better simulate important physical phenomena, including combustion, turbulence-chemistry interactions, and the interaction of fluids with solid structures.

“In the big picture, I look at computational modeling of combustion and fluid flows, mostly for gaseous states,” said Niemeyer. “I also investigate situations in which moving flows interact with a moving object.” A flag flapping in the wind is an everyday example of such an interface.

His work holds the potential to increase the efficiency of combustion technology, which translates into lower pollution and greenhouse gas emissions and conservation of scarce resources. Niemeyer estimates that 85% of the world’s power is generated by combustion, so anything that decreases its negative impact on the environment will have long-lasting climate and health implications. “I’d like to see the world move away from combustion for generating power, but for the near future we will still be burning things to convert energy, whether it’s for transportation or electrical power. We should try to do it in a way that minimizes harm,” he said. “My work doesn’t directly lead to cleaner energy, but my hope is that it provides either the tools or the understanding that results in that endpoint.”

Niemeyer joined Oregon State in 2014 as research faculty and became an assistant professor in 2015. He received his Ph.D. in mechanical engineering from Case Western Reserve University in 2013. Case Western also conferred his B.S. in aerospace engineering in 2009 and his M.S. in aerospace engineering in 2010.

Among his primary objectives is to create faster computer-based tools for simulating combustion and power generation, allowing engineers and designers to solve problems more quickly and more accurately. “Computational modeling drives design these days,” he said. “The old model of building multiple prototypes is too slow and expensive.” Niemeyer also strives to increase understanding of phenomena that are central to power generation, whether it occurs in an aircraft’s gas turbine engines or a natural gas power plant.

In one study, funded by the NSF and done with collaborators at the University of Connecticut, Niemeyer is designing combustion simulation software that meshes more effectively with advanced microprocessors. Computer codes that have been used for years are not always compatible with updated processor architectures. “The goal is to advance simulation algorithms so they can run on the newest processors,” he explained. Ultimately, he wants to build a library of code that is freely available to other researchers. Niemeyer strongly advocates conducting science openly and sharing results. “If we develop software or come up with useful data, we put them on a widely used website so anyone can download them,” he said.

A related project, funded by NASA and conducted jointly with MIT and Purdue, involves speeding up computer simulations of fluid flow performed by high-speed computing clusters. Each node in the cluster calculates part of the problem at hand, but communication between nodes often cannot keep up with processing speeds. The result is an information bottleneck and delayed results, Niemeyer explained. “We’re working toward reducing that communication time to get faster simulations,” he explained. One potential application area for such simulations is studying the aerodynamics of NASA vehicles, such as the Space Launch System.

Niemeyer also studies smoldering combustion — slow burning that occurs without a visible flame. Smoldering produces higher levels of carbon monoxide and other pollutants compared with flames and can be difficult to contain, making it a serious health and environmental threat. It is particularly relevant in wildfire management. His research, funded by the EPA and the Department of Defense and in partnership with David Blunck, also an assistant professor of mechanical engineering at Oregon State, aims for a better understanding of the causes and underlying conditions of smoldering events. “We want to know the physics of ignition and propagation of smoldering,” said Niemeyer.

Niemeyer also investigates pulse detonation engines, which have no moving parts and rely on continuous explosions to generate thrust for locomotion and, possibly, electricity generation.

When mapping out the direction of his research, Niemeyer is mindful of choosing avenues that hold the potential for strong contributions to his field. “I don’t want to work in a vacuum, and I don’t want to conduct research that doesn’t make an impact,” he said. Additional funding sources for his research include Chevron and Oregon BEST.

In high school, Niemeyer played with the idea of becoming an architect. But, inspired by space travel and science fiction, he decided to study aerospace engineering. From there, curiosity about aircraft and spacecraft engines led him to advanced degrees in mechanical engineering.

When working with undergraduates, Niemeyer takes great pleasure from shepherding students through difficult academic work. “I really enjoy it when a student who didn’t understand something finally figures out the problem,” he said. “What I teach is not easy, and some students understandably feel insecure. By the time they leave, however, many have ‘gotten it.’ Niemeyer appreciates similar growth among his graduate students. “Seeing their progression and watching them produce work that others in the field take interest in is truly gratifying,” he said.

— Steve Frandzel

Ravi BalasubrahmanianAssistant Professor Ravi Balasubramanian specializes in robotics and human control systems. His primary research goals are twofold: 1) make robots operate robustly in unstructured settings, (such as outdoors) and in built environments not specifically designed to accommodate robotic operations, and 2) develop a deeper understanding of the neural control and biomechanics of the human body. He integrates fundamental control and design techniques as well as human-subject experiments to study human performance. Application areas include robotic grasping and manipulation, mobile robotics, human-robot interaction, and rehabilitation.

“My research blends robotic and human functions. I draw inspiration from humans to improve robots, and from robots to enhance human capabilities and improve quality of life, especially for people with disabilities,” said Balasubramanian, who directs the Robotics and Human Control Systems Laboratory. For instance, he envisions robots tasked with picking up and manipulating heavy objects in warehouses or factories, thereby reducing workplace injuries. “I want to enable robots to do that work reliably with partial information in an unstructured, fluid setting,” he said. In addition, seniors or people with disabilities might use robots to assist them with daily activities. In the context of robotic inspiration for human systems, he is developing implantable mechanisms, such as pulleys and linkages, which integrate with tendon networks to enhance orthopedic surgery.

Balasubramanian joined Oregon State in 2011. He received his B.Eng. in mechanical engineering from the National University of Singapore in 2000, and earned his M.S. and Ph.D. in robotics at Carnegie Mellon University in 2003 and 2006, respectively.

Robo-inspiration for improving human capabilities drives one of his primary research projects, which is funded by a National Science Foundation CAREER grant and a Department of Defense congressionally directed medical research program. The work involves designing implantable passive mechanisms for orthopedic surgery to correct high median-ulnar nerve palsy. Patients afflicted with the debilitating condition cannot contract the muscles that flex the fingers and lose the ability to grasp objects. To correct the problem, surgeons transplant tendons from the fingers and connect them to the wrist extensor muscle. If the procedure is successful, patients regain the ability to curl all their fingers simultaneously, but they still can’t flex them individually or adapt to objects of different shapes and sizes.

Balasubramanian proposes re-attaching the relocated tendons using artificial linkages that allow greater freedom of motion. “We’re constructing triangular, differential mechanisms between the muscle and the fingers. As the wrist extensor muscle contracts, the triangles rotate and allow each finger to adapt as needed to objects they’re grasping,” he explained.

Throughout his life, Balasubramanian has nurtured an abiding interest in the physics of movement, which led him to study mechanical engineering. “I realized I could study the physics of movement of a car or some other device like a robot, or I could study the physics of movement of the human body,” he said. “I’ve done both because the physics of movement, whether it’s of a person or a machine, is all related.”

Balasubramanian thrives on the inherent challenges of research, which force him to test his intellectual boundaries. “It allows us to really find out who we are and what our limits are, and that fascinates me,” he said. When it comes to teaching, he believes that sparking student enthusiasm is essential to learning. In addition to ensuring that his students grasp the core concepts of their class work, he also focuses on how to identify and tackle problems, emphasizing that various approaches to problem solving are available. “There’s probably an optimal way to solve a given problem, but one must be tireless in exploring the possibilities,” he said. “The important thing is that there are no boundaries to knowledge, and lots of interesting stuff comes up when you start putting multiple disciplines together.” For his own inspiration, Balasubramanian turns to an ancient Indian saying: Let noble thoughts come from all directions.

In 2016, Balasubramanian received the prestigious NSF CAREER Grant, which recognizes junior faculty who exemplify the role of teacher-scholars through research, education, and the integration of the two to forward the mission of their organization. He also received the Outstanding Researcher Award from the National Institutes of Health National Center for Simulation in Rehabilitation Research in 2012. Other funding sources include the Oregon State University Venture Development Fund, the Department of Defense DARPA Robotics Challenge, and several businesses.

— Steve Frandzel

mechanical-student_780x409

Students spent 30 consecutive hours of engineering design, teamwork, and development at HWeekend on October 8-9, sponsored by the College of Engineering. The theme was “Show’em What You Got!”, and participants did just that, creating some of the most complete projects of any HWeekend. The purpose of the theme was to encourage projects that could be submitted to national competitions.

It was the sixth iteration of the highly successful event that gives engineering and business students an entire weekend to develop an idea and prototype it. Forty-two students participated with majors in electrical and computer engineering, computer science, mechanical engineering, nuclear engineering, and finance.

After some breakout brainstorming sessions and presentations of their ideas, participants split into 10 teams to work on their projects. The diverse ideas included a modified game of laser tag, a guitar that could tune itself, and a smart shin guard paired with a virtual reality environment.

One of the groups returned from the previous HWeekend held during Spring term. That group continued with their effort to build a ferrofluid display using individually wound electromagnets. The other groups were much newer to their projects, such as the mobile coffee heater group, which worked on finding components they could use to heat liquids in a drinking cup.

“The beautiful thing about this is that it’s fast paced and you really see results, even if they’re not exactly the results you hope for,” says Audrina Hahn, a mechanical engineering student, who worked on the Open Laser Tag project.

This event made use of the all-new Buxton Hall Makerspace, the Mastery Challenge lounge, and the Virtual Makerspace, which gave students access to 3D printing, soldering irons, a drill press, and laser cutting.

“It’s really amazing all the resources that we have available to us that are really simple to use and are things that are up-and-coming that we will probably continue to use into our careers,” Hahn says.

Mentors for this HWeekend included eight industry representatives. Martin Held from Microsemi returned to guide teams and answer hardware questions. Multiple mentors arrived from Intel in Hillsboro, including several recent graduates of Oregon State. These mentors split up to help on projects where their experience helped groups work with unfamiliar technologies. One group that benefitted was the motion tracking robot team, which received help with OpenCV from a mentor who revealed a personal interest in assembly programming.

Ben Buford was one of the recent graduates who came back from Intel to provide mentorship. He spent most of his time contributing to the ferrofluid display.

“I love seeing people come up with quick solutions that let them accomplish something and overcome obstacles that they didn’t know existed three hours prior,” Buford says.

Beyond the satisfaction of completing prototypes of their ideas, students at HWeekend compete for two group awards. The Executors award goes to the team that produces the best execution of their original idea to create the most polished final product and the Helping Hand is for the team that contributes the most to other teams. At this HWeekend, the Arbitrarily Tuned Stringed Instrument team was selected for both awards. The team included members Keaton Scheible, Youthamin “Bear” Philavastvanid, Elliot Highfill, and Savannah Loberger.

— Kyler Stole

David Blunck

Welty Faculty Fellow and Assistant Professor David Blunck’s research focuses on four domains: combustion, ignition, radiation, and energy. In his Combustion, Ignition, Radiation, and Energy Laboratory and Propulsion Laboratory, he and his team study practical energy conversion (such as jet engine combustion and propulsion) and natural energy conversion (such as forest fires). His research has applications in fields as diverse as aviation and wildfire management.

Blunck hopes to establish a multidisciplinary fire center to contribute to fire management understanding and help communities prepare for and increase their resilience to wildfires. He also envisions Oregon State’s combustion research program becoming one of the strongest on the West Coast—for good reason, he believes, given the extraordinary level of expertise within his own lab and among his colleagues in the College of Engineering.

Before joining Oregon State in 2013, Blunck earned his Ph.D. in Mechanical Engineering from Purdue University in 2010, then worked at the Turbine Engine Division of the Air Force Research Laboratory, where he was the lead investigator for fundamental combustion research related to gas turbine combustors and pollutant formation. He co-led a team of engineers in designing and testing the world’s smallest combustor for use in advanced gas turbine engines. He completed his B.S. in mechanical engineering at Brigham Young University in 2005 and his M.S. in mechanical Engineering at Purdue in 2008.

In one of his current research projects — an international collaboration funded by the Federal Aviation Administration — Blunck is seeking to help streamline the costly and cumbersome process for screening alternative aviation fuels, such as biofuels or coal-based fuel. “Currently, the lengthy process costs millions of dollars and requires the manufacturer to produce large amounts of the new fuel, which then undergoes testing in airplanes on the ground,” said Blunck. Fuels that make the cut are then tested in flight — another costly step that still may not result in a viable fuel. But Blunck, using a relatively simple burner and small volumes of fuel, hopes to help determine more quickly and inexpensively which fuels to weed out early in the process and do not warrant full-scale testing. “By eliminating unsuitable fuels early on, the successful ones will become a reality sooner,” he said.

In another study, funded by the Joint Fire Science Program and conducted in collaboration with the U.S. Forest Service, Blunck is investigating the rate of ember generation during forest fires. During large burns, embers can be lofted high into the air, travel miles on the wind and drop to earth to ignite new fires. “Our biggest concern is at wild/urban interfaces where civilization is surrounded by wilderness,” he said. “A rain of embers can threaten homes and other property, even if they’re miles from the main fire,” The work involves, in part, lab studies in which various forest materials are burned in a wind tunnel to quantify how pieces break off to generate embers, and how different parameters — moisture content, size, material, shape — change their behavior. The research will proceed to controlled burns and measurements of ember production rates in the wild. Such knowledge about the physics and chemistry of ember production could lead to predictive tools that enable incident commanders to dispatch resources more effectively to protect lives and property.

In a third study, funded by the U.S. Navy, Blunck is seeking to advance the technology used in pulse detonation engines — a ground-breaking evolution of gas turbine engines used for propulsion and energy production. In a pulse-detonation engine, the energy from rapidly repeating detonations is incorporated into the process to produce additional power and efficiency. “We’re studying how combustion products change the character of the detonation process,” said Blunck. “That information will help us better design devices that use detonations.”

In 2016, Blunck was awarded the prestigious Office of Naval Research Young Investigator Award for his research entitled “Ignition, Deflagration, and Detonation Behavior of Fuel and Oxidizer Mixed with Combustion Products.” He also was named the 2014-2015 AIAA Pacific Northwest Section Young Engineer of the Year. His groundbreaking research has attracted significant external funding from numerous sources, including the FAA, the Air Force Research Laboratory, the American Chemical Society, the Office of Naval Research, the National Energy and Technology Laboratory, and the Joint Fire Science Program.

Of all his many achievements, Blunck is most proud of his students. “At the end of the day, they’re the ones who will go out in the world and make a difference,” he said. “My own research will have an impact to some extent, but I think my influence on the world for the better will be greatest through my students and who they become.”

— Steve Frandzel