Assistant Professor Javier Calvo-Amodio is an industrial engineer who specializes in engineering management. As director of the Change and Reliable Systems Engineering and Management Research Group, he applies systems thinking and systems engineering methodologies to design reliable management processes that maintain robust organizational structures to meet the constantly shifting demands of globalization and other agents of change. “I want to create processes within organizations that allow them to face change comfortably and effectively,” he said, adding that systems thinking in engineering focuses on the interactions between human elements and technical and managerial systems.

Through his work, Calvo-Amodio aims to help organizations create working cultures that balance technical and human needs—a factor he thinks is often overlooked in engineering practice. From a practical standpoint, that means providing organizations a framework for success when they implement continuous process improvement methodologies. “The right conditions must be set up for such major changes to succeed,” Calvo-Amodio explained. His approach can be applied to any organization with complex management structures, whether they’re in manufacturing, healthcare, government, or other fields.

Calvo-Amodio joined Oregon State in 2012 after earning his Ph.D. in Systems and Engineering Management from Texas Tech University. He received his B.S. in Industrial and Systems Engineering from Tecnológico de Monterrey, Toluca, Mexico in 2000 and went to work in the private sector before continuing his education. In 2002, he earned a M.Sc. in business management from the University of Hull in the U.K., then served in several engineering management positions before starting his Ph.D. studies in 2007.

In current research, funded by the Oregon State Athletics Department, Calvo-Amodio is working with Ean Ng, research assistant professor and engineering management program director in the School of Mechanical, Industrial, and Manufacturing Engineering, to streamline travel for the university’s intercollegiate athletic teams. “We have 18 official teams,” he said. “Each one arranges travel separately, sometimes even when they’re headed to the same place. That leads to higher expenses for transportation and lodging, and longer travel times.” By taking a systems approach, Calvo-Amodio intends to help the Athletic Department coordinate team travel more effectively and enable it to, for example, negotiate better rates with hotels and transportation services. Refining the current travel system also promises to improve student welfare by cutting down on overall travel time, which means improved class attendance and study time and more adequate sleep.

Calvo-Amodio is also working with Boeing Portland to develop a daily cadence production system to improve the company’s rate of production. By applying systems engineering and engineering management principles, Boeing Portland will be able to increase productivity without disrupting its existing manufacturing process or corporate culture. The project is so complex that Calvo-Amodio spent the first two years (of what will likely be a five-year process) to understand and quantify the dynamic behavior of the company’s manufacturing system— particularly worker expectations about their roles. Only then could he move on to developing solutions.

He is also collaborating with colleagues in the College of Engineering to help the Oregon Department of Transportation calculate the agency’s return on investment for advanced engineering technology. ODOT will present the findings next year to the state legislature when it makes its annual case for funding.

Beyond his research, Calvo-Amodio develops lessons for Oregon State’s SMILE (Science Math Interactive Learning Experience) program, which exposes underserved Oregon middle school and high school students to STEM fields.

Calvo-Amodio grew up around engineers and recalls the thrill of visiting huge civil construction sites such as roads, bridges, and dams. Always mechanically inclined, he knew early on that engineering would be a good career fit. By adding a graduate business degree to his credentials, he created an ideal platform from which to address both the technical and managerial challenges of engineering. But he never expected to join the ranks of academia.

While pursuing his Ph.D., he learned (much to his surprise) that he enjoyed teaching and conducting research. “I once thought I would never become a professor, because I didn’t like teaching,” he said. “I was very wrong. I really enjoy the relationships that I build with students, and I get a lot of satisfaction from seeing them grow and watching them get back and keep going when they stumble.” He describes himself as a tough, but fair, teacher. “I’m a no-nonsense guy and I make my expectations clear at the start of a course, but I’m also very supportive,” he said. “If I see students learning, that’s what’s most important. Teaching the technical material in class is the easy part. The hard part is getting to know students personally and helping them develop as people and professionals.”

In 2016, Calvo-Amodio was named as the International Society for the Systems Sciences (ISSS)

representative to the International Council of Systems Engineers. He is also a member of the ISSS systems research team, which is currently working on the Systems Literacy Project to redefine what systems sciences and systems thinking is and where it’s headed. At Oregon State, his Capstone design team won the 2016 Student Learning and Success Teamwork Award.

— Steve Frandzel

Print Friendly

Leave a reply

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> 

required

*