Kyle NiemeyerKyle Niemeyer, assistant professor of mechanical engineering, develops advanced numerical methods for computational modeling of combustion and reactive flows. Recent research includes the advancement of tools and algorithms for graphics processing units that increase the accuracy and detail of chemical models in combustion simulations. Other research interests include computational modeling of multi-physics flows for applications in aerospace, transportation, and energy systems. Niemeyer’s research group develops numerical methods that researchers can use to better simulate important physical phenomena, including combustion, turbulence-chemistry interactions, and the interaction of fluids with solid structures.

“In the big picture, I look at computational modeling of combustion and fluid flows, mostly for gaseous states,” said Niemeyer. “I also investigate situations in which moving flows interact with a moving object.” A flag flapping in the wind is an everyday example of such an interface.

His work holds the potential to increase the efficiency of combustion technology, which translates into lower pollution and greenhouse gas emissions and conservation of scarce resources. Niemeyer estimates that 85% of the world’s power is generated by combustion, so anything that decreases its negative impact on the environment will have long-lasting climate and health implications. “I’d like to see the world move away from combustion for generating power, but for the near future we will still be burning things to convert energy, whether it’s for transportation or electrical power. We should try to do it in a way that minimizes harm,” he said. “My work doesn’t directly lead to cleaner energy, but my hope is that it provides either the tools or the understanding that results in that endpoint.”

Niemeyer joined Oregon State in 2014 as research faculty and became an assistant professor in 2015. He received his Ph.D. in mechanical engineering from Case Western Reserve University in 2013. Case Western also conferred his B.S. in aerospace engineering in 2009 and his M.S. in aerospace engineering in 2010.

Among his primary objectives is to create faster computer-based tools for simulating combustion and power generation, allowing engineers and designers to solve problems more quickly and more accurately. “Computational modeling drives design these days,” he said. “The old model of building multiple prototypes is too slow and expensive.” Niemeyer also strives to increase understanding of phenomena that are central to power generation, whether it occurs in an aircraft’s gas turbine engines or a natural gas power plant.

In one study, funded by the NSF and done with collaborators at the University of Connecticut, Niemeyer is designing combustion simulation software that meshes more effectively with advanced microprocessors. Computer codes that have been used for years are not always compatible with updated processor architectures. “The goal is to advance simulation algorithms so they can run on the newest processors,” he explained. Ultimately, he wants to build a library of code that is freely available to other researchers. Niemeyer strongly advocates conducting science openly and sharing results. “If we develop software or come up with useful data, we put them on a widely used website so anyone can download them,” he said.

A related project, funded by NASA and conducted jointly with MIT and Purdue, involves speeding up computer simulations of fluid flow performed by high-speed computing clusters. Each node in the cluster calculates part of the problem at hand, but communication between nodes often cannot keep up with processing speeds. The result is an information bottleneck and delayed results, Niemeyer explained. “We’re working toward reducing that communication time to get faster simulations,” he explained. One potential application area for such simulations is studying the aerodynamics of NASA vehicles, such as the Space Launch System.

Niemeyer also studies smoldering combustion — slow burning that occurs without a visible flame. Smoldering produces higher levels of carbon monoxide and other pollutants compared with flames and can be difficult to contain, making it a serious health and environmental threat. It is particularly relevant in wildfire management. His research, funded by the EPA and the Department of Defense and in partnership with David Blunck, also an assistant professor of mechanical engineering at Oregon State, aims for a better understanding of the causes and underlying conditions of smoldering events. “We want to know the physics of ignition and propagation of smoldering,” said Niemeyer.

Niemeyer also investigates pulse detonation engines, which have no moving parts and rely on continuous explosions to generate thrust for locomotion and, possibly, electricity generation.

When mapping out the direction of his research, Niemeyer is mindful of choosing avenues that hold the potential for strong contributions to his field. “I don’t want to work in a vacuum, and I don’t want to conduct research that doesn’t make an impact,” he said. Additional funding sources for his research include Chevron and Oregon BEST.

In high school, Niemeyer played with the idea of becoming an architect. But, inspired by space travel and science fiction, he decided to study aerospace engineering. From there, curiosity about aircraft and spacecraft engines led him to advanced degrees in mechanical engineering.

When working with undergraduates, Niemeyer takes great pleasure from shepherding students through difficult academic work. “I really enjoy it when a student who didn’t understand something finally figures out the problem,” he said. “What I teach is not easy, and some students understandably feel insecure. By the time they leave, however, many have ‘gotten it.’ Niemeyer appreciates similar growth among his graduate students. “Seeing their progression and watching them produce work that others in the field take interest in is truly gratifying,” he said.

— Steve Frandzel

Ravi BalasubrahmanianAssistant Professor Ravi Balasubramanian specializes in robotics and human control systems. His primary research goals are twofold: 1) make robots operate robustly in unstructured settings, (such as outdoors) and in built environments not specifically designed to accommodate robotic operations, and 2) develop a deeper understanding of the neural control and biomechanics of the human body. He integrates fundamental control and design techniques as well as human-subject experiments to study human performance. Application areas include robotic grasping and manipulation, mobile robotics, human-robot interaction, and rehabilitation.

“My research blends robotic and human functions. I draw inspiration from humans to improve robots, and from robots to enhance human capabilities and improve quality of life, especially for people with disabilities,” said Balasubramanian, who directs the Robotics and Human Control Systems Laboratory. For instance, he envisions robots tasked with picking up and manipulating heavy objects in warehouses or factories, thereby reducing workplace injuries. “I want to enable robots to do that work reliably with partial information in an unstructured, fluid setting,” he said. In addition, seniors or people with disabilities might use robots to assist them with daily activities. In the context of robotic inspiration for human systems, he is developing implantable mechanisms, such as pulleys and linkages, which integrate with tendon networks to enhance orthopedic surgery.

Balasubramanian joined Oregon State in 2011. He received his B.Eng. in mechanical engineering from the National University of Singapore in 2000, and earned his M.S. and Ph.D. in robotics at Carnegie Mellon University in 2003 and 2006, respectively.

Robo-inspiration for improving human capabilities drives one of his primary research projects, which is funded by a National Science Foundation CAREER grant and a Department of Defense congressionally directed medical research program. The work involves designing implantable passive mechanisms for orthopedic surgery to correct high median-ulnar nerve palsy. Patients afflicted with the debilitating condition cannot contract the muscles that flex the fingers and lose the ability to grasp objects. To correct the problem, surgeons transplant tendons from the fingers and connect them to the wrist extensor muscle. If the procedure is successful, patients regain the ability to curl all their fingers simultaneously, but they still can’t flex them individually or adapt to objects of different shapes and sizes.

Balasubramanian proposes re-attaching the relocated tendons using artificial linkages that allow greater freedom of motion. “We’re constructing triangular, differential mechanisms between the muscle and the fingers. As the wrist extensor muscle contracts, the triangles rotate and allow each finger to adapt as needed to objects they’re grasping,” he explained.

Throughout his life, Balasubramanian has nurtured an abiding interest in the physics of movement, which led him to study mechanical engineering. “I realized I could study the physics of movement of a car or some other device like a robot, or I could study the physics of movement of the human body,” he said. “I’ve done both because the physics of movement, whether it’s of a person or a machine, is all related.”

Balasubramanian thrives on the inherent challenges of research, which force him to test his intellectual boundaries. “It allows us to really find out who we are and what our limits are, and that fascinates me,” he said. When it comes to teaching, he believes that sparking student enthusiasm is essential to learning. In addition to ensuring that his students grasp the core concepts of their class work, he also focuses on how to identify and tackle problems, emphasizing that various approaches to problem solving are available. “There’s probably an optimal way to solve a given problem, but one must be tireless in exploring the possibilities,” he said. “The important thing is that there are no boundaries to knowledge, and lots of interesting stuff comes up when you start putting multiple disciplines together.” For his own inspiration, Balasubramanian turns to an ancient Indian saying: Let noble thoughts come from all directions.

In 2016, Balasubramanian received the prestigious NSF CAREER Grant, which recognizes junior faculty who exemplify the role of teacher-scholars through research, education, and the integration of the two to forward the mission of their organization. He also received the Outstanding Researcher Award from the National Institutes of Health National Center for Simulation in Rehabilitation Research in 2012. Other funding sources include the Oregon State University Venture Development Fund, the Department of Defense DARPA Robotics Challenge, and several businesses.

— Steve Frandzel

mechanical-student_780x409

Students spent 30 consecutive hours of engineering design, teamwork, and development at HWeekend on October 8-9, sponsored by the College of Engineering. The theme was “Show’em What You Got!”, and participants did just that, creating some of the most complete projects of any HWeekend. The purpose of the theme was to encourage projects that could be submitted to national competitions.

It was the sixth iteration of the highly successful event that gives engineering and business students an entire weekend to develop an idea and prototype it. Forty-two students participated with majors in electrical and computer engineering, computer science, mechanical engineering, nuclear engineering, and finance.

After some breakout brainstorming sessions and presentations of their ideas, participants split into 10 teams to work on their projects. The diverse ideas included a modified game of laser tag, a guitar that could tune itself, and a smart shin guard paired with a virtual reality environment.

One of the groups returned from the previous HWeekend held during Spring term. That group continued with their effort to build a ferrofluid display using individually wound electromagnets. The other groups were much newer to their projects, such as the mobile coffee heater group, which worked on finding components they could use to heat liquids in a drinking cup.

“The beautiful thing about this is that it’s fast paced and you really see results, even if they’re not exactly the results you hope for,” says Audrina Hahn, a mechanical engineering student, who worked on the Open Laser Tag project.

This event made use of the all-new Buxton Hall Makerspace, the Mastery Challenge lounge, and the Virtual Makerspace, which gave students access to 3D printing, soldering irons, a drill press, and laser cutting.

“It’s really amazing all the resources that we have available to us that are really simple to use and are things that are up-and-coming that we will probably continue to use into our careers,” Hahn says.

Mentors for this HWeekend included eight industry representatives. Martin Held from Microsemi returned to guide teams and answer hardware questions. Multiple mentors arrived from Intel in Hillsboro, including several recent graduates of Oregon State. These mentors split up to help on projects where their experience helped groups work with unfamiliar technologies. One group that benefitted was the motion tracking robot team, which received help with OpenCV from a mentor who revealed a personal interest in assembly programming.

Ben Buford was one of the recent graduates who came back from Intel to provide mentorship. He spent most of his time contributing to the ferrofluid display.

“I love seeing people come up with quick solutions that let them accomplish something and overcome obstacles that they didn’t know existed three hours prior,” Buford says.

Beyond the satisfaction of completing prototypes of their ideas, students at HWeekend compete for two group awards. The Executors award goes to the team that produces the best execution of their original idea to create the most polished final product and the Helping Hand is for the team that contributes the most to other teams. At this HWeekend, the Arbitrarily Tuned Stringed Instrument team was selected for both awards. The team included members Keaton Scheible, Youthamin “Bear” Philavastvanid, Elliot Highfill, and Savannah Loberger.

— Kyler Stole

David Blunck

Welty Faculty Fellow and Assistant Professor David Blunck’s research focuses on four domains: combustion, ignition, radiation, and energy. In his Combustion, Ignition, Radiation, and Energy Laboratory and Propulsion Laboratory, he and his team study practical energy conversion (such as jet engine combustion and propulsion) and natural energy conversion (such as forest fires). His research has applications in fields as diverse as aviation and wildfire management.

Blunck hopes to establish a multidisciplinary fire center to contribute to fire management understanding and help communities prepare for and increase their resilience to wildfires. He also envisions Oregon State’s combustion research program becoming one of the strongest on the West Coast—for good reason, he believes, given the extraordinary level of expertise within his own lab and among his colleagues in the College of Engineering.

Before joining Oregon State in 2013, Blunck earned his Ph.D. in Mechanical Engineering from Purdue University in 2010, then worked at the Turbine Engine Division of the Air Force Research Laboratory, where he was the lead investigator for fundamental combustion research related to gas turbine combustors and pollutant formation. He co-led a team of engineers in designing and testing the world’s smallest combustor for use in advanced gas turbine engines. He completed his B.S. in mechanical engineering at Brigham Young University in 2005 and his M.S. in mechanical Engineering at Purdue in 2008.

In one of his current research projects — an international collaboration funded by the Federal Aviation Administration — Blunck is seeking to help streamline the costly and cumbersome process for screening alternative aviation fuels, such as biofuels or coal-based fuel. “Currently, the lengthy process costs millions of dollars and requires the manufacturer to produce large amounts of the new fuel, which then undergoes testing in airplanes on the ground,” said Blunck. Fuels that make the cut are then tested in flight — another costly step that still may not result in a viable fuel. But Blunck, using a relatively simple burner and small volumes of fuel, hopes to help determine more quickly and inexpensively which fuels to weed out early in the process and do not warrant full-scale testing. “By eliminating unsuitable fuels early on, the successful ones will become a reality sooner,” he said.

In another study, funded by the Joint Fire Science Program and conducted in collaboration with the U.S. Forest Service, Blunck is investigating the rate of ember generation during forest fires. During large burns, embers can be lofted high into the air, travel miles on the wind and drop to earth to ignite new fires. “Our biggest concern is at wild/urban interfaces where civilization is surrounded by wilderness,” he said. “A rain of embers can threaten homes and other property, even if they’re miles from the main fire,” The work involves, in part, lab studies in which various forest materials are burned in a wind tunnel to quantify how pieces break off to generate embers, and how different parameters — moisture content, size, material, shape — change their behavior. The research will proceed to controlled burns and measurements of ember production rates in the wild. Such knowledge about the physics and chemistry of ember production could lead to predictive tools that enable incident commanders to dispatch resources more effectively to protect lives and property.

In a third study, funded by the U.S. Navy, Blunck is seeking to advance the technology used in pulse detonation engines — a ground-breaking evolution of gas turbine engines used for propulsion and energy production. In a pulse-detonation engine, the energy from rapidly repeating detonations is incorporated into the process to produce additional power and efficiency. “We’re studying how combustion products change the character of the detonation process,” said Blunck. “That information will help us better design devices that use detonations.”

In 2016, Blunck was awarded the prestigious Office of Naval Research Young Investigator Award for his research entitled “Ignition, Deflagration, and Detonation Behavior of Fuel and Oxidizer Mixed with Combustion Products.” He also was named the 2014-2015 AIAA Pacific Northwest Section Young Engineer of the Year. His groundbreaking research has attracted significant external funding from numerous sources, including the FAA, the Air Force Research Laboratory, the American Chemical Society, the Office of Naval Research, the National Energy and Technology Laboratory, and the Joint Fire Science Program.

Of all his many achievements, Blunck is most proud of his students. “At the end of the day, they’re the ones who will go out in the world and make a difference,” he said. “My own research will have an impact to some extent, but I think my influence on the world for the better will be greatest through my students and who they become.”

— Steve Frandzel