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CHAPTER 11

Postoptimality
analysis of an

ecosystem
management
simulator

JOSEPH E. POWERS received his AB degree from the
University of California at Davis, his MS from
Humbolt State University, and his PhD from Virginia
Polytechnic Institute and State University. His
present research interests include methods of deter-
mining optimal management strategies for ecosystems
and large-scale simulations of aquatic ecosystems.

He is also interested in the use of simulation as a
method of predicting the impact on aquatic ecosystems
of construction projects. The contents of this paper
are based on a portion of Mr. Powers' doctoral
dissertation.

ROBERT T. LACKEY, Associate Professor, Department of
Fisheries.and Wildlife Sciences, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia,
is a certified fisheries scientist of the American
Fisheries Society. A graduate of Humboldt State
University (fisheries science, 1967), University of
Maine (zoology, 1968), and Colorado State University
(fisheries and wildlife science, 1971), Dr. Lackey is
currently engaged in research to improve management
of renewable natural resource systems, especially
fisheries. He is the author of numerous technical
and popular articles in resource management and
aquatic biology.

ABSTRACT

This paper describes a computer-implemented simula-
tion model of the Rich Creek stream fishery in West
Virginia; the model, however, is general enough to
be adaptable to the management of any aquatic eco-
system. Major features of the model are (1) a
stochastic process to quantify interactions between
and among fish species, (2). a dynamic equation of
angler density as a function of time of year, wea-
ther, previous success, and anticipation, and (3) a
measure of satisfaction ("utility") for recreational
anglers. The measure of utility is an objective
function which is maximized by an optimization al-
gorithm subject to constraints on maximum budget,
minimum commercial catch, and minimum diversity of
fish species. When an optimal solution has been
found, it is subjected to a postoptimality analysis
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which shows the effects of small perturbations\of
variables on the three constraints and other param-
eters. Results show that high diversities of fish
species and high commercial catches cannot occur
stmultaneously. At low levels of budget for managing
the stream fishery the diversity comstraint does not
limit utility; diversity is already at a fairly high
level. Temperature and metabolic rate are important
variables in the model; that is, perturbations in
these variables produce relatively large changes in
utility. The size of the human population with
access to the stream and the size of the management
budget also significantly affect utility. Models of
ecosystems cannot be completely general, and must be
designed to "answer" specific questions. Optimiaa-
tion of course requires an explicit objective
function, which is also needed to.gjudge the sensitiv-
ity data obtained from the postoptimality analysis.

INTRODUCTION

Computer simulation has become a popular tool for
ecological study, and its potential for scientific
and management applications to ecology is considered
to be great.l>2 But, complex interactive computer-
implemented models have been criticized because the
hypotheses about parameter values and logical patterns
used in the models are not often tested.3 One method
available to test these hypotheses is sensitivity
analysis. The sensitivity of simulation solutions to
small changes in parameters of the model is usually
expressed as partial derivatives of state variables
with respect to system <:omponen1:s.'+ One type of
sensitivity analysis, often used in operations
research, is the study of the behavior of the optimal
solution when small changes are made in model vari-
ables.5 Such studies are termed postoptimality
analysis; they require use of an explicit measure of
system performance (an objective function) which is
maximized or minimized subject to constraints.
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It is unlikely that a scientist is going to accept a
theory or an ecosystem manager is going to accept a
decision policy on the basis of a single simulation
experiment. Fortunately analysis of simulation re-
sults provides insight into the likely dynamic struc-
ture of the ecosystem and into the tradeoff effects
of multiple factors, such as exploitation of the
resource by competing users versus the limited ability
of the ecosystem to maintain itself under differing
conservation strategies. This paper reports a post-
optimality analysis of a model of a stream ecosystem.
The model was designed to investigate management
policies for fisheries resources.

Table 1

Common names, scientific names, and simulation category
names for species in Rich Creek

*Category

Common name

Partlculate organlc
o - matter
Macr01nvertebrate

SHINERS

~',Campostoma anomalum
'Pimephales notatus‘
szephales promelas

STONERLS

Catostomus commersonm

VEypenteltum ntgrz ns

SIMULATION MODEL

The stream fishery modeled is patterned after a 10-
mile section of Rich Creek, Monroe County, West
Virginia. Components of the ecosystem which are ex-
ploited include (1) a heavily fished rainbow-trout
population supported entirely by stocking with
catchable-size trout, (2) bluegill and smallmouth
bass populations for which there is a relatively small
amount of fishing, and (3) baitfish species which are
exploited by commercial fishermen using seines and
traps. Table 1 summarizes common, scientific, and
category names (into which each species was placed for
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this simulation) for the Rich Creek ecosystem. All
fish but trout, bluegill, and smallmouth bass are
treated as bait species.

The details about the development and structure of the
model are given by Powers® and will hot be discussed
here. However, we present the following description
to show the general form of the equations, the com-
ponents (categorized fish species) of the equations,
and how the variables interact.

The simulation model is composed of difference equa-
tions from which numerical results are calculated at
specified points in simulated time. The simulation
results reported here are from runs of 24 time periods
of 15 days each (approximately 1 year). We estimated
the parameters and constants for the functions sub-
jectively or, if data were available, by iterative
least-squares regression.

Interaction between and among the fish species is
modeled-using a stochastic process in which an anim-
al's actions are governed by a preemptive priority se-
quence: detection of a high-priority stimulus (arrival)
will force the animal to stop behavior toward (service
of) a stimulus of a lower priority; that is, high-pri-
ority stimuli preempt service of lower priority stimuli.

Given m priorities (1,2,...,m, with high priorities
first) then P,;, the steady state probability of the
animal's being idle (not acting on a stimulus) as a
result of not having been interrupted during a ser-

vice of the Zth priority, is:
P .=
ot
A i

the service rate, i.e., the number of ser-
vices of type i that the animal is physi-
cally capable of accomplishing per umit
time

_ LA}

Y

m
z

J=1

m
1+ 3z Y
J=1

the arrival rate, i.e., the number of
stimuli of type %< that the animal detects
per unit time

and where v, are found recursively from m to 1 by
m
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P,; is the proportion of time that the animal is
id&e, i.e., that it has completed an activity (ser-
vice) of priority ¢ without interruption by a service
or higher priority. Of these noninterrupted acts, a
certain proportion B is completed successfully.

B = u. /(u. +u7 %), where u; is the complementary ser-
vice of p For example, if u. is the rate of cap-
turing prey z by predator y, then ug is the rate at
which prey z escapes from predator y.

The reciprocal of P .8 is the expected amount of
time between success%ul completions of a service of
priority <. This reciprocal divided into the total
time of interaction is the number of successful com-
pletions (X;) during that time of interactiom.



Similarly, the reciprocal of Poi(l's) divided into
total time is the number of unsuccessful completions
(Yi) during the same time of interaction.

Arrival rates'Ai are calculated by
1
. = , 2 2\ 3
A, = 2R, (sv + sr) (3

where
D = surrounding area in which animal v can
detect stimuli

N_ = densities of species r

S5 = speeds with which animals v and r move in
the ecosystem

R, = proportion of species r that are in the <th
v priority.

R; is time-, species-, and size-dependent in the sim-
ulation model, and the speed S is a nonlinear func-
tion of temperature, fish size, and fish species.

The priority sequence (¢ = 1,2,...,6) employed in the
model is (with high priorities first):

(a) Escape from a predator (Z=1)

(b) Escape from a dominant aggressor (Z=2)

(c) Reproduce with a receptive mate (Z=3)

(d) If in reproductive condition, attack a subdomi-
nant fish of the same or different species (not
for the purpose of eating it) (£=4)

(e) Chase a prey (i=5)

(f) If not in reproductive condition, attack a sub-
dominant (Z=6).

Table 2

Decision activities expressed explicitly
in the simulation model

Priorities ¢ = 4, 5, and 6 imply that reproduction and
associated social behavior generally take precedence
over feeding behavior, which is priority (e). This
appears to be true for many fishes.”

The numbers of successful and unsuccessful completions
of activities per time period, Y;, X3, and X5 (where
the subscripts refer to priority < = 1, 3, and 5,
respectively), are especially important, and they are
calculated using (1), (2), and (3). The mortality
rate (¥,), natality rate (X3 times fecundity), and
predation rate (X5) are determined for each age-class
in each species. Fecundity is a nonlinear function
of fish species, fish size, time of year, and temper-
ature. Ration size (weight of prey consumed per
animal) is found by multiplying X5 by the weight of
the prey. Growth per individual is then calculated
as a nonlinear function of ration size, temperature,
and fish size. Particulate organic matter density,
macroinvertebrate density, and temperature are func-
tions of time only and are, therefore, forcing func-
tions for the stochastic interaction model and its
associated submodels. The stochastic.model is
iterated over each age-class in each species.

The decision variables (those under management's
control) govern the rate and kind of exploitation by
commercial and recreational fishermen (Table 2).
These decisions are time-dependent inputs in the
model; there are 13 decision activities in each of
24 time periods or 312 decision-variable inputs.

The density of commercial fishermen may be controlled

by the state agency and is an input decision variable

(Decision 6 in Table 2). However, recreational fish-

ing pressure (density of recreational fishermen) can-

not be controlled directly by the agency. The number

of people who fish during a time period depends on

factors such as weather conditions, time of year, the

success rate (catch rate) of fishermen during pre-

vious time periods, and anticipation due to a long

time in which no fishing is allowed. This last

factor is assumed to induce opening day crowds.

Density of recreational fishermen (angler demnsity) is |
predicted in the simulation model by the product

ANG = (POP) (PLIC(TC) (TYD (AND (CA)/AREA 4)

where
ANG = angler density (number/mZ)

number of people with access to the stream

T U
]
= 0
(]

n it

proportion of POP with fishing licenses

AREA = surface area of the stream (m2)

The other factors of (4) are

- TIME o 32
TY = EXP [-AP} Ggtace ~ AP

2
TC = EXP [—AP3 (T - APL*) ]

AN =1 - AP5EXP [—AP6(OFF + 1]
CA =1 - AP,EXP [-APgCCPUED ]
where
TIME = time period
NSTAGE = number time periods in a year (=24)
T = temperature (°C)
OFF = number of consecutive previous days in

which no fishing occurred
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CPUE = catch-per-angler-day during the previous
time period, and
APi = constants (¢ = 1,2,.,.,8).
3

The density of anglers and commercial fishermen then
become part of the stochastic interaction model;
thus, catch rates by the fishermen depend on arrival
rates, service rates, and the priority level given
to the fishermen by the fish, i.e., escaping a seine
would be priority one, while fish caught by traps or
by hook are caught while in the act of feeding
(priority 5). The catch of each age-class by re-
creational and commercial fishermen is then computed.

Management of an ecosystem implies that there is

some specific objective or end sought by management.
The management objective in this study is to maximize
the benefits derived by recreational fishermen
(anglers), subject to constraints on budget, on
benefits derived by commercial fishermen, and on
overexploitation.

Angler-derived benefits are estimated by a "utility"
(objective) function. In this study the objective
function is an index that includes the satisfaction
that a consumer (angler) receives from alternative
quantities of ''commodities." Angler utility (satis-
faction) in the simulation is a function of four
independent variables or attributes:

(1) Species of fish caught—trout, bluegill, or )
smallmouth bass, or any combination of the three

(2) Average size of fish caught per angler—large
fish preferred to small fish

(3) Average number of fish caught per angler —more
fish preferred to fewer fish

(4) Crowding by other anglers (anglers/m?/day)—
less crowding preferred to more crowding.

Attribute 4 indicates that a party of fishermen fish-
ing together will reduce the satisfaction experienced
by each. This unrealistic feature is kept in the
objective function because very little fishing in
Rich Creek is done by parties of fishermen.

The attributes are found to be utility and preferen-
tially independent, which allows the objective func-
tion to be developed using Keeney's model.®’% The
contribution of each attribute to the overall utility
is Uy, U,, Uy, and Uy, where U is a nonlinear func-
tion of the four contributions. Questionnaires to
obtain data for this study were sent to licensed
fishermen livirg near Rich Creek. The responses to
the questionnaires determined the shape and structure
of the objective function. The range of this function
is from zero to one. The objective function U for
the simulation model is angler utility summed over
all 24 time periods; i.e., the objective is to maxi-
mize U.

Three terminal constraints are included in the opti-
mization problem. A terminal constraint is a con-
straint placed on the value of a state variable at
the end of the last time period, i.e., at the end of
the year. Budget B is terminally constrained.so as
not to exceed BDG dollars. The only variable costs
in the model are those resulting from planting trout,
and this cost is assumed to be $0.0022 per gram of
trout delivered to the stream ($0.40 per average
fish). Therefore budget B only reflects trout costs.
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The second terminal constraint maintains a predeter-
mined level of benefits derived by the commercial
fishermen. Average commercial catch of baitfish per
seining operation per day in each time period summed
over all time periods is the measure of commercial
benefits . This measure is terminally constrained
such that ¢ is not less than COM fish.

The ‘last terminal constraint is included so that not
all fish will have been harvested at the end of the
year. If a certain density of each of the fish
species is to be maintained at the end of the year,
the model would include eight more terminal con-
straints (one for each species), making computation
difficult. However, some species have more "utility"
to anglers and some have more important functions in
the ecosystem than others do. Also, migration as a
means of reintroduction of fish is quite likely in
the stream. Since we desired to have a single con-
straint as an indicator of overharvest, we chose the
diversity index:

Diversity _ N
(in bits) - 1-4334n RTAPI )

where

N = total number of individuals in the ecosystem

Ni number of individuals in species <
(2 =1,2,...,n).

Trout are not included in diversity calculations
because essentially all of the trout present are
planted by the State of West Virginia. This index
is a measure of "entropy,'"!? and the relationship
between entropy and diversity may be rather tenuous.
However, (5) was chosen because it does depend upon
the number of species n, the distribution N;, and the
total number N, each of which are important as indi-
cators of overharvest. Therefore, diversity is ter-
minally constrained so that at the end of the last
time period, diversity D is not less than DV bits.
The optimization problem may now be stated: Find the
decision variables which maximize U subject to

11

B £ BDG
COM
DV

WVowv

c
D
Diversity in (5) is an abstract concept, and we had
no a priori judgments about what DV should be. Also,
we thought it possible that small perturbations of

the constraints DV, COM, and BDG would alter the
optimal value of U considerably. Therefore, a post-

ooptimality analysis was conducted to determine the

effect of uncertainties about the constraints and
parameter values upon the optimal solution.

METHOD OF ANALYSIS

An approximate solution to the optimal-policy problem
is found by use of a heuristic algorithm we designed
specifically for simulation problems. The algorithm
combines aspects of search by regression!? and a
policy-improvement algorithm utilizing the discrete
maximum principle.l3

Eleven indices (state variables) of system dynamics
are used:

Stp(t=0’1’2""’25 and p=1,2,...,11.)



The values of £ are the 24 time periods that make up
the year. The values of p have the following mean-
ings:

1. Cumulative commercial catch per seine opera-
tion for each day (for 15 days per period)
Budget expenditures

Diversity index

Time of year (time-stage number t)
Biomass of POM and MACROINV
Biomass of TROUT

Biomass of BLUEGILL

Biomass of SMOUTHBS

Biomass of baitfish

W N9 & 1 B wN

fury
o

Angler density

11. Cumulative sum of angler utility (satisfaction)

Next, k decision policies (dy,) are randomly generat-
ed (¢t =1,2,...,24 time periogs, and q = 1,2,...,13
decision activities listed in Table 2). Using the k
sets of dt , k simulation experiments are run and

the s ang dtq are recorded for each of the k
experiments.

By linear regression analysis, transition functions
(Ttp) are fitted to the k data sets

Se1,p = Tep(8p 4y
where s, and d, are the state and decision vectors,
respectively. “The models used for each Ttp are
St+l,p = Ttp(—s-t’ ét)
11 13

(a.5,.+b.s2.)+ & (c.d,.+r.d2)) (6)
4ol TELTETEL j=1 9t »J tJ
where a, b, ¢, and r are state-dependent constants
estimated by regression. A policy dpg is optimal®’13
if the stage-t Hamiltonian Ht

11 .
Ht = pzl [et«i-l,p : Ttp (it" d—t)J Q)

is stationary with respect to d;. The state deriva-

tives (0, ) are calculated recursively by
11 eTti
6, = % (@8 , — 8)
tp i=1 t+1,17 astp.

where the terminal state derivatives (Z=25) are
defined as

035,11 = 1

8 0; < =4,5,...,10 for the unconstrained

terminal states

25,7

and where 035 ; for the terminally constrained states
(4 = 1,2,3) are found using a decision inversion
method, 13

The Ht in (7) may also be expressed as

13

L 42 9
q;l(qutq " tq) ®

where v and w are constants (constant functions of
the stage-¢ state variables and state derivatives)
because (6) is a quadratic function. Therefore, thé
stationary point at (aHt/adtq) =0 is

dtq vq/qu
If di, from (10) exceeded bounds placed upon it
0 < gt < dmax)’ then dt is set equal to the bound
exceedeg (0 or dpay) - Usgng (10), a new decision
policy is derived for the fitted equations (6). A
new simulation experiment is performed using the new
decision policy and the search proceeds as follows:

(10)

1. If the value of the objective ("utility") func-
tion calculated from the new simulation experi-
ment is greater than the lowest value of the
objective function of the k previous simulation
experiments, then replace the state and decision
variables of the old experiment with the values
obtained from the new experiment and go to step 3.
Otherwise go to step 2. )

If the new objective function value is lower than
" any of the previous values, then find the vector
of differences (A,,) between the new decision
variables and thosg decision variables which
resulted in the highest value of the objective
function in the k previous experiments. Multiply
Atq by a step size p (0<p<1) and add the result
to each of the corresponding new decision varia-
bles.

N

Return them to the simulation for another
experiment. If still no improvement occurs, then
reduce the step size (reduce p). Repeat until
improvement occurs (in which case go to step 3)
or until a prespecified number of step size re-
ductions have taken place (go to step 5). '

3. If improvement occurs, test the convergeénce cri-
terion. Is the difference between the high and
low values of the objective function found from
the k simulations less than some prespecified e?
If yes, go to step 5; if no, go to step 4.

4, Using the k simulation results, fit the transi- |
tion functions and find a new optimal policy '
(dtq)' Test this policy by simulation. Return
to step 1.

5. Print results.

To handle terminal constraints in the calculation of
the objective function from the simulation, a
penalty-function technique is used. If U is the
terminal value of the objective function calculated
from the simulation, then the penalized objective
(0BJ) is
U if constraints are met
OBJ = {

U-¢ if constraints are not met

where ¢ is a number much greater than the maximum
value which U may attain.

Computational experience. shows, that there are limita-
tions to the application of the algorithm. First, a
global optimum cannot be guaranteed because of the
nonconvex nature of the response surface. Sometimes
the program converges to local optima, but by using
different starting points for the algorithm for each
optimization, local optima may be detected. Also,
care must be taken to be certain that at least one of
the k original experiments meets all three of the
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terminal constraints. If all of the k initial data
points were infeasible, the algorithm is incapable of
establishing a proper trajectory toward a feasible
solution. ’

Analysis of changes in parameter values after the
optimization problem has been solved (postoptimality
analysis) can be conducted in the case of linear
models without performing another optimization prob-
lem.5 However, because of the nonlinear, nonanalyti-
cal nature of our model, it was necessary for us to .
solve a new optimization problem with each change in
parameter values.

RESULTS AND DISCUSSION

Application of the model to the Rich Creek decision
problem requires some input information. In many
cases this information was in the form of subjective
estimation by the authors. However, validity checks
helped to determine how useful the program is. One
means of testing the validity of the model is to com-
pare predicted outputs with outputs observed from the
real system. In the Rich Creek ecosystem most of the
system variables cannot actually be observed. How-
ever, two variables were observed:

The first was the catch of baitfish by seines that
resulted from field studies in the summer of 1973,
Using decision variables which were in effect in 1973,
these field studies were mimicked by the model. Both
deterministic and Monte Carlo predictions of the bait-
fish and crayfish catch by seine and trap were made
(Table 3).

The second variable observed was the angling pressure
in Rich Creek in '1973. West Virginia's Department of
Natural Resources reported that Rich Creek angling
pressure ranged from 300 to 500 angler-hours/acre/
year. This corresponds to 2778-4630 angler-days/
year. The simulation model gave a mean of 4719
angler-days/year for seven Monte Carlo simulationms,
which is comparable to the observed range. These
results may be considered as indicative of the model's
validity. However, the results are only comments on
‘the validity of selected portions of the model and
only under existing 1973 conditions. Because no
guarantee can be made as to the model's ability to

Table 3

Number of baitfish (caught) as observed
and as predicted by the model

 ; medn. 977 S

i* Determlnlstlc pred1ct10n .t;,
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"reach as high a level as when it is low.

predict future events, it is imperative that rela-
tionships between variables be investigated in the
analysis.

For the initial optimization problem, the terminal
constraints were set as follows:

BDG = $6,960 2 B
COM = 5,000 <
DV = 100,000 < D

The optimal value of utility to anglers (U) derived
from this program was 7.668 units of fishing satis-
faction per day. The commercial catch, budget ex-
penditures, and diversity. in this prediction were
budget B = $6,512, commercial benefits (fish caught)
¢ = 5,701, and diversity D = 494,300. As we shall
see, the system was not greatly constrained under
these terminal conditions.

Experimenting with the model shows that the approxi-
mate maximum level of cumulative commercial catch

per seine-day which can be reached 1s 6,000 fish,

while the maximum diversity D is 105. These figures

are dependent upon input variables (primarily the
estimates of initial population sizes). Subjective
estimates are made for many of these variables, but i
these outputs serve as reference points for the post- |
optimality analysis.

In investigating the sensitivities of the terminal
constraints, the first situation tested was:

BDG = $50,000 (seven times the budget for the initial
optimization reported above), COM = 0, and DV =

In effect, this is the problem of unconstrained
maximization of utility, and the resulting optimal
utility U* was 8.891. This U* is achieved for

B = $26,044, C = 5,692, and D = 101,400, showing the
diminishing returns for dollar expenditures. Nearly
quadrupling the budget increased the average angler's
satisfaction by about one-sixth, and the commercial
catch decreased very slightly. At the same time
diversity decreased by about four-fifths. These
three numbers partially define the bounds of the
constrained region. If the terminal constraints are
within these bounds, these constraints will not
greatly affect the solution.

The feasible region bounded by commercial catch COM
and diversity DV is a function of the interaction of
these two components. If COM is high, then diversity
cannot reach as high a level as when COM is low.
Conversely when DV is high, commercial catch cannot
This means
that under most circumstances the constraints of
commercial catch and diversity are not tight unless
the region is rather narrowly defined.

When the shape and structure of the objective func-
tion was originally defined, it was found that (all
else being equal) the angler received more satisfac-
tion (utility) from a unit of trout than from a unit
of either bluegill or smallmouth bass. Therefore,
when the budget was high, more money could be spent,
more trout could be planted, and the maximum possible
angler's satisfaction U* primarily reflected the
utility of trout fishing. But, when B was low, not
as many trout could be planted and, thus, the other
types of angling took on increased importance. The
optimal decisions and the role of other constraints
are, themselves, affected by this switch in
importance. .
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Figure 1 - Commercial catch constraint in cumulative
catch per seine-day versus budget con-
straint, given two values of the diversity
constraint, DV = 100,000 on the left and
DV = 500,000 on the right. Contour lines
of equal optimal utility (U*) were fitted
by eye

When the budget constraint BDG is approximately
$3,500, the optimal solution occurs when diversity
is greater than 5Xx 105; i.e., decreasing DV to 10°
the diversity constraint does not increase U*
(Figure 1). But when BDG is high (greater than
$6,000) a decrease in DV to 10° increases U*. Also,
for fixed U* and fixed B (e.g., U* = 6.5 and

B = $4,500), the commercial catch C' is higher when
DV = 105 than when DV = 5x 105,

The analysis indicates that a high value of the di-
versity index D occurs at low budget expenditures B.
This implies that a more diverse system is needed
when the natural portions of the ecosystem (small-
mouth bass and bluegill) are being exploited at a
higher rate. An increase in diversity may provide
more opportunities for the remaining species to grow
and reproduce. Conversely, at high budgets the
maintenance of high diversity will result in an in-
direct output loss from the trout portion of the eco-
system since the concentration of trout is unfavor-
able to other species. Therefore at high budgets, a
high diversity can only occur when angler's satisfac-
tion (utility U) is lower; i.e., diversity becomes

an active constraint.

Since utility reflects the preferences of the angler,
sensitivity analysis should especially include those
variables and parameters which affect the man-biota
interaction. Human population size (POP) has a nega-
tive effect on U* (Figure 2). This is a logical
situation because one attribute in the objective
function U is privacy. Increasing the population
means more people will fish, yielding less privacy
and fewer fish per angler.

The aquatic fauna in the ecosystem are affected
primarily by two major factors: (1) the water tem-

perature and (2) the standard metabolic rate of the
fish and crayfish. When the entire temperature func-
tion is shifted 2°C higher, the optimal utility of
8.112 is achieved with D = 809,700. When the tem-
perature function is shifted 2°C down, the diversity
constraint can not be met at D = 100,000, the minimum
acceptable value of DV; hence no solution is possible.

When the standard metabolic rate is reduced 10% for
all fish and crayfish, the effect on angler satisfac-
tion is not great (U* = 7.454). However, when the
metabolic rate is Znereased 10%, once again, the di-
versity constraint can not be met at D = 100,000,

and no solution exists.

Temperature and metabolic rate, though related,
operate differently in the ecosystem: When tempera-
ture increases, it increases the metabolic rate.
However, it also increases the swimming speed; hence
the animal is more likely to be successful as a pre-
dator. This gain apparently outweighs the energy
losses to higher metabolism. The gain is reflected
in faster growth, more reproduction, and subsequently
a gain in diversity and angler satisfaction (utility).
On the other hand, increasing the standard metabolic
rate alone without an associated increase in preda-
tory efficiency results in a net energy loss, a sub-
sequent reduction in diversity, and also an increase
in utility.

7.5

Optimal utility

|
25000 50000 }
Human population size |
Figure 2 - Optimal cumulative utility obfained from
various human population sizes; curve
fitted by eye

Another question (particularly relevant to the prac-
ticing ecosystem manager) asked is How important are
the initial estimates of the fish population? This
question was investigated by (1) halving and

(2) doubling all of the initial population estimates.
It must be remembered that doing this alters the
diversity index. The resulting problem was somewhat
circumvented by (1) doubling and (2) halving the
population sizes at the end of each simulation before
the diversity was calculated. In this way, differ-
ences between diversities were suppressed,so that
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the same diversity constraint could be used in both
cases. The results showed that doubling the initial
population estimates produced U* = 7,584, while
halving them produced U* = 8.381. Considering the
artificial way in which the diversity constraint was
suppressed, these differences do not seem significant.

CONCLUSIONS

Postoptimality analysis of the stream management sim-
ulation model shows the interaction of the budget,
commercial catch, and diversity constraints and the
effect of this interaction on optimal satisfaction for
anglers (utility). At high budgets most of the re-
creational fishing is for trout, and the diversity
constraint keeps utility from achieving higher values.
At low budgets, other fish species are exploited by
recreational anglers, and diversity is high without
requiring high values of the diversity constraint.

The commercial catch is inversely correlated with
diversity, but it has little effect on utility.

Variables which produced large changes in utility U
when perturbed are budget, water temperature, number
of anglers, fish metabolic rate, and the biomass of
trout. The study shows that to maximize U, management

should try to increase the number of trout planted and
to disperse the fishing pressure throughout the year.

Research to improve the model of Rich Creek and sub-
sequently to understand the fishery system better
should include investigations of temperature changes
over time and of the metabolism of the fish (especial-
ly .trout).

Postoptimality analysis of the simulation model of
Rich Creek was a valuable exercise. Even though
parameter-and inputs were subject to large estimation
errors, several significant results were achieved:
(1) a strategy for optimizing angler satisfaction
with acceptable constraint, (2) the relation of this
strategy to parameters and constraints, and (3) per-
haps more significantly, identification of those
variables which have the largest effect on the objec-
tive function and which are therefore the key to plan-
ning future research.
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DISCUSSION

Cale: Would you explain the meaning of l/Poi with
reference to its time units and its relation to P,;?

Powers:. A steady-state probability in terms of a
Markov chain may be interpreted as the proportion of
time that is spent (in the long run) in a certain
state [P_. = proportion of time spent in steady state
i]. When this value is divided into 1 unit of time,
the quotient is the number of timé units that are
expected to pass before the return to this state
(expected recurrence time). The time units are
actually the number of transition stages in the
Markov chain which may be equivalently defined in
terms of time (1 transition stage is equivalent to 1
hour of interaction time), i.e., continuous time is
broken into discrete time steps of 1 hour.

Cheslak: You identified a certain fixed priority
schedule of activities and some probability functions
based upon these activities. Animals seldom act in
terms of a fixed time-invariant priority schedule;
therefore, what changes would occur in your post-
optimality study }f you introduced a nonfixed time-
variant priority schedule?

Powers: Each of the steady-state probabilities
(probabilities of being in the states of serving an
item of priority i and probabilities of being idle
having successfully completed a service of priority
i) are functions of the arrival rates. At different
times of the year, the proportion of animals which
will fall in each priority category will vary.
Therefore, the arrival rates were weighted by esti-
mates of these time-dependent proportions. These
proportions of arrivals would be ignored by the
animal and, therefore, from the animal's point of
view, they were not arrivals at all. .

Clark, W.C.: In deriving your overall objective
function U from its component parts (Ul' Uys Ugzs Uq),
at least three judgments must be made: (1) Are the
values assigned to any one of the components inde-
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pendent of values taken by other components at the
same time; that is, is a certain quantity of privacy
valued equally, independent of the number of fish
being caught?

Powers: The attributes of U were formulated and
scaled in such a way that the assumptions of pre-
ferential and utility independence were valid. These
assumptions were validated by discussions with

fishermen.
Clark, W.C.: The second judgment to be made is as
follows: (2) Are the values of the individual or

aggregate U's time-independent; that is, are five
fish valued as highly early in the season as later?
(This is the discount problem.)

Powers: With the short time-horizon (one year),
discounting was assumed to have minimal effect. The |
preference of the fishermen does not appear to change.

Clark, W.C.: The third and final judgment to be made
is as follows: (3) Are the temporal patterns of the
U's important, even where the answer to (2) is "yes"
and :the average value of the U is the same, indepen-
dent of pattern? In other words, is the time series
of fish catches (0,6,0) valued equally with one of
(2,2,2)? (Does the rate of change or autocorrelation
matter?) The answers to these questions are not a
priori obvious in any given instance, and the way in
which we answer them can seriously influence the be-
havior of the aggregate U. Several studies of pre-
ferences in the design of resource systems have shown
the answers to often be "no," "no," and "no." Were
these answers derived from your questionnaire, or
were they adopted by your team as (hopefully) rea-
sonable assumptions? )

Powers: We assumed that disutility associated with
the rate of change of these attributes was non-
existent. It was for precisely that reason that
several attributes were considered in U. If one



attribute was low, often the other attributes would
dominate. Therefore, the rate of change in U would
be relatively small, and the disutilities, if they
existed, would be artificially masked.

Clark, C.W.: In response to Bill Clark's gquestion:
first, it seems that intertemporal preference would
be of little importance in your case becaugse of the
one-year time horizon. Second, time-varying param=
eters should be easily dealt with. Disutility
associated with fluctuations, however, could introduce
nontrivial nonlinearities into the optimization model.

Powers: Our assumptions of nonfluctuating preferences
appeared to be good for the population with which we
were dealing. However, one of the reasons for using
a short time-horizon (one year) was for the purpose
of reevaluating all inputs at the end of each year,
and this is what we recommend. ‘

Crow: After you do your initial five runs and opti-
mize along the curve, you go back with another simu-
lation run. Is this just to test your optimization?
If your solution is not optimal, what do you do?

How does this differ from a steepest-descent method?

Powers: You derive an optimal decision policy for
the approximating models fitted to the initial k
simulation experiments (k=35 for our applications) .
Then apply this policy to the next simulation run
and test the results of its use in the simulation.
The result of this test will not in general be
optimal; it will only produce a better value of the
objective function or a worse value. If it is a
worse value, you adjust step sizes. If it is better
than the worst value of the objective function as
calculated in the k simulation experiments, therv
replace the state and decision variablies of the im-
proved objective function. Convergence occurs if
all k objective-function results become sufficiently
close together.

To use the gradient method, you would need estimates
of the first derivatives. To get these estimates
for a system with the number of decision variables
with which we were dealing would be computationally
infeasible.

Smith, F.E.: Your subroutines are very detailed.
Have you examined them to see if all of the behavior
patterns and details of age structure are needed;
that is, do all of them have significant effects on
the output? Can the model be simplified?

Powers: We have not asked to see if the details in
structure produced significant effects. However, we
did find that the estimates of most of the parameters
associated with this detail were relatively insigni-
ficant. Therefore, the details, which are logically
appealing (especially when they are presented to non-
systems ecologists), may not be important, but they
provide a framework for applications to other eco-
systems in which these components might be significant.

Cheslak: In your conclusion you implied that simula-
tions of natural ecosystems could be benefited by the
definition of explicit objective functions. Are you
implying that a natural ecosystem has objectives,

and if so could you identify some for me?

Powers: I believe that I implied that analysis of
simulations of natural ecosystems would be benefited
by explicit objective functions, i.e., explicit ob-
jective functions are equivalent to clearly stated
hypotheses in empirical studies, and simulation
experiments should provide information in relation
to these hypotheses.

Simpson: For whom was the project done, and did they
use the results?

Powers: This study was funded by the West Virginia
Department of Natural Resources, and the results are
for their use. The results reported here are pre-
liminary results; a more complete report will be for-
warded to West Virginia D.N.R. Discussions with re-
presentatives of West Virginia have shown they are
interested in the conclusions, especially conclusions
about the structure of the optimal decisions, marginal
utilities, and effects of perturbing the constraints.
The computer program was designed so that it could be
easily adapted to management of any aquatic ecosys-
tem. Therefore, it could be used by state, federal,
or private agencies interested in determining optimal
decisions for managing their aguatic system.
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