Canvas Survey with Mud Card Questions

New online instructors often express concern about the loss of immediate student feedback they get by teaching in person. These educators count on in-class interaction to help shape their lesson plans in real-time. Student questions, lack of interaction, or even blank looks, help them understand what concepts are difficult for their learners. Others just feel more comfortable with the two-way nature of in-classroom communication.

But teaching in an online environment doesn’t have to be mutually exclusive from gauging student interest and comprehension.

Mud Cards

child in mud puddle in rain boots

I was first introduced to the concept of “Mud Cards” or “Muddiest Points” through an open course MIT offered in Active Learning in College-Level Science and Engineering Courses. The instructor described handing out index cards to each student at the end of class asking students to write down an answer to one or more of a few prompts (MIT OpenCourseWare, 2015).

In an online course, this could easily take the form of a weekly survey that looked something like this:

  • What concept from this week did you find confusing?
  • Is there anything you found particularly compelling?
  • What would you like to know more about?

Potential Benefits

The answers received have multiple potential benefits. First of all, instructors will get to look for trends in a particular class.

  • Are learners missing something central to a course learning outcome?
  • Is there a concept they need additional resources to master prior to an upcoming exam?
  • What excites them the most?

Getting this information weekly can provide information that is normally gathered during in-class interactions. It may even be more informative, as participation is likely to be higher (or can be incentivized through participation points). This feedback can be used to add content, perhaps through an announcement at the beginning of the next unit, addressing any common problems students reported. It can also help improve the content or activities for the next iteration of the online course.

The second benefit of an activity like this one is that it is an easy way to introduce active learning to your online course. Active learning, with origins in Constructivism, includes the idea that students build knowledge through “doing things and thinking about what they are doing.”

Rather than passively watching narrated slide-based lectures or videos, or completing assigned readings, they are asked to think about what is being taught to them. Each student, by reflecting on questions like the examples above, takes some responsibility for their own mastery of the content.

3-2-1 (a similar tool)

I recently attended the keynote at the Oregon state Ecampus Virtual Faculty Forum by Tracey Tokuhama-Espinosa (Tokuhama-Espinosa, 2020). At the beginning of her presentation, she told all of us we were going to be asked to email her our “3-2-1.” A 3-2-1, she defined as:

  • Three things that are new to me
  • Two things so interesting I will continue to research or share with someone else
  • One thing I will change about my practices based on the information shared today

Even though I was very familiar with the underlying pedagogical practice she was leveraging, I paid significantly more attention than I would have otherwise to an online presentation. I wanted to come up with something helpful to say. To be honest, suffering from COVID related ZOOM fatigue, it also made sense to ensure the hour of my time resulted in something actionable.

A Word of Caution

The use of a tool like the Mud Cards or 3-2-1 will be successful only if used consistently and students see the results of their efforts. If not introduced early and repeated regularly, students won’t develop the habit of consuming content through the lens of reflecting on their own learning. Similarly, students who never see a response to their input, through a summary or additional explanations, will get the message that their feedback is not important and lose the incentive to continue to provide it.

Conclusion

Introducing a reflection activity like those suggested is a simple, quick way to incorporate active learning into a course while simultaneously filling a void instructors sometimes miss through being able to ask questions of their students in a classroom.

Canvas allows for building anonymous graded or ungraded surveys in which a weekly activity like this would be easy to link to in a list of tasks for a unit of study. It is a low development effort on the part of the instructor, and participation from students shouldn’t take more than 5 minutes.

I will link below to some of the resources mentioned that discuss the use and benefits of Mud Cards and active learning in instruction. If you try it out in an online course, I would love to hear how it works for you.

Resources


Rainboots photo by Daiga Ellaby on Unsplash

Do you ever get the sense that students posting in their online discussions haven’t really engaged with the reading materials for that week? One way to encourage active engagement with course readings is to have students annotate directly in the article or textbook chapter that they are assigned. While it is common to see students annotating in their paper copies of their textbooks or readings, these aren’t easily shared with their peers or instructor. Of course, students could snap a photo of their handwritten annotations and upload that as a reading assignment task, though that does require additional steps on the part of both the student and instructor, and there is no interaction with others in the course during that process. However, it is possible to have students annotate their readings completely online, directly in any article on the web or in their ebook textbook. With this process, the annotations can also be seen by others in the course, if desired, so that students can discuss the reading all together or in small groups as they are reading an article or book chapter online. The benefit to this type of annotation online includes components of active learning, increased student interaction, and accountability for students in engaging with the course materials.

Active Learning

The shift to active learning is a bit like going from watching a soccer game on TV to playing a soccer game. Likewise, reading passively and reading to learn are two different activities. One way to get students actively reading to learn is to ask them to make connections from the course materials to their own lives or society, for example, which they then make into annotations in their readings. Annotation tasks require students to take actions and articulate these connections, all without the pressure of a formal assessment. Furthermore, many students arrive at college not knowing how to annotate, so teaching basic annotation practices helps students become more active and effective learners (Wesley, 2012). 

Interaction

“Individuals are likely to learn more when they learn with others than when they learn alone” (Weimer, 2012). Discussion board activities are often where interaction with others in an online course takes place. However, rather than having students refer to a particular reading passage in their discussion board activity, they can simply highlight a passage and type their comments about it right there in the article, no discussion board assignment needed. Others in the course can also read participants’ annotations and reply. With some creative assignment design in Canvas, this can also be set up for small groups. Students may find this type of annotation discussion more authentic and efficient than using a discussion board tool to discuss a reading.

News article embedded in the assignment shows annotations made by specific students with a box to reply
Above, the online news article is embedded in the Canvas assignment. Students simply go to the assignment and can begin annotating. In the image above, a student highlights a passage to show what the annotation refers to. For a collaborative activity, students can reply to any peer’s comment. Alternatively, the instructor can set the annotations to be private, for more independent tasks.

Accountability

A popular way to ensure that students have done the reading is to give them a quiz. However, this is a solitary activity and is higher-stakes than asking students to make targeted annotations throughout a reading. It may make more sense to guide them through a reading with specific annotation tasks. Being explicit about what pieces of the reading students should focus on can help them understand what they need to retain from the reading assignment.

Possible Activities

  • Student-student interaction: Replace a discussion board activity with a collaborative annotation activity where students can annotate the article as they read. Then they can go back later in the week and reply to each other. 
  • Activate prior knowledge: Ask students to include one annotation related to what they already know about this topic.
  • Evaluate sources: Find a pop-science article in your discipline that includes weak support for arguments or claims, for example. Ask students to identify the sources of support in the arguments and challenge the validity of the support. Perhaps they could even be tasked with adding links to reliable sources of support for your discipline in their annotation comments. 

Nuts and Bolts

Two popular annotation tools are Hypothesis and Perusall. I would encourage you to test these out or ask your instructional designer about your needs and whether an annotation tool would be a good fit for your course learning outcomes. 

Resources:

Hypothesis

Perusall

Wesley, C. (2012). Mark It Up. Retrieved from The Chronicle of Higher Education: https://www.chronicle.com/article/Mark-It-Up/135166

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Facilitating Active Learning with Zoom

connected learners image
Image by Gerd Altmann from Pixabay

By Christine Scott, Instructional Design Specialist, Oregon State University Ecampus

So you managed to get your face-to-face courses up and running remotely in the midst of a global pandemic. You’ve secured your Zoom sessions to avoid unwanted disruptions, your students are in their virtual seats, and you’ve successfully delivered a few lectures. So what’s next?

Now that you have students’ attention, you may find that you’re ready to focus on transforming your synchronous session into a space for active learning to take place. It’s no secret that students learn better when they are actively engaged in the learning process. The question is how that translates to a remote Zoom session. Is it even possible to recreate the dynamic learning environment of your face-to-face class? 

To answer that question, we can look to best practices in online pedagogy. We know that students in online environments experience better outcomes and higher satisfaction when there are opportunities for active learning and engagement with the instructor, the course content, and each other. Fortunately, Zoom has several tools we can leverage to incorporate learner engagement in the remote setting.

Creating Opportunities for Active Learning

To set the stage for active learning, consider breaking your content delivery into shorter chunks, punctuated by periods of activity. Ask students to do something meaningful to help them engage with the content. This approach not only supports learning, but it also encourages accountability. If students understand they will be called upon to complete a task, they are more likely to be motivated to engage with the lecture.

During your synchronous session, you might ask students to: 

  • Respond to a question
  • Take notes to share
  • Create a list of examples or discussion questions to share afterward on the Canvas discussion board
  • Prepare a reflection to submit after the fact
  • Solve a problem

Breakout Rooms in Zoom

Breakout rooms are easy to set up and operate in Zoom. These small group spaces are useful as a means of incorporating peer-to-peer interaction and feedback into your remote course. They can also promote inclusion by providing an opportunity for low-stakes participation for learners who may be reluctant to chime in during large group sessions. Finally, breakout session activities can serve as a tool for formative assessment as the activities students complete can help instructors gauge achievement of the learning outcomes. 

Creating Breakout Room Tasks

Breakout room tasks can be carried out on-the-fly in the synchronous session, or they can form part of a more complex assignment. You might provide a prompt, file, or a link as a springboard for spontaneous discussion in small groups. Alternatively, you might flip your remote classroom by providing students with a pre-activity to complete before the live session. For further engagement, you might have students build on what they produce in their breakout rooms through an asynchronous submission in Canvas. 

When creating breakout room tasks: 

  • Set clear expectations. Any explanation of expectations should include a clear relationship to learning outcomes. Provide a code of conduct for interaction, performance expectations related to the task, etc.
  • Prepare instructions in advance. Provide students with a clear task and deliverable. Include any resources needed to complete the task. Outline the deliverable or provide a model so that students understand what is expected upon reconvening with the whole class. 
  • Guide students in how to self-organize. Assign roles or ask students to assign them (host facilitator, notetaker, timekeeper, and speaker who reports back to the class). 
  • Provide technical support. A tip sheet for the technology can be helpful in case they get stuck, for example. 
  • Monitor. Circulate as you would in your face-to-face class by joining breakout rooms to check in. 
  • Report back. Ask students to present a summary slide (groups might contribute a slide to a class google presentation), share group’s response, etc. Follow up with whole-group sharing in some form. 

Sample Breakout Room Activity Types

  • Small group discussion
  • Think – Pair – Share
  • Group project
  • Data analysis/text analysis
  • Debate preparation
  • Simulation practice – mock interview
  • Peer feedback
  • Jigsaw activity

Polling 

Another option for interactivity during lectures is the Zoom poll. Polls are easy to launch and are a handy tool for icebreakers at the beginning of sessions, to check for understanding, or to allow students to have input on lecture content. They can be created as anonymous surveys or as simple question responses. 

Fig. 1 This example demonstrates how polling could be used to pose a question and elicit an anonymous response from participants.

Non-verbal Feedback in Zoom 

Sample of Nonverbal feedback icons from Zoom
Nonverbal Feedback options in Zoom

If you miss the non-verbal feedback of a live audience in a face-to-face setting, you might consider encouraging students to use Zoom’s non-verbal feedback options available in the chat window. This tool allows students to input quick yes/no responses to questions, ask for the speaker to speed up or slow down, indicate that they need a break, and more. 

Sample of a music activity
Fig 2. Consider how the simplicity of non-verbal feedback indicators might be useful in a cognitive psychology course for student feedback while listening to audio clips. Students could be asked to use the thumbs up when they can name the familiar melody mixed with interfering tones, for example.

 

Facilitating Lab Experiences Remotely

Live lab activities provide another opportunity for interactive experiences in Zoom. The following examples of lab tasks that implement active learning principles are taken from existing online courses through Oregon State University Ecampus. Consider how similar field and lab experiences could be used to engage learners in your remote courses. 

Sample Experiences

image from science course

Science Education

In this example from a phenology course, students observe and record specific elements in a local natural area over the course of the term. After watching an instructor-led demonstration, learners record key elements based on Nature’s Notebook. They then share their data, photos, and drawings with the class to create a collective body of observations. Students then contribute their observations to a national phenology network. 

Public Health

pedometer walker
Image source: pixfuel.com, cc

Learners in this course collect and analyze authentic data through a public health topic: the human-built environment. Students wear a pedometer to track how many steps they take over a 48-hour period. They ask other members of their family or community to track the same information. Students gather, analyze, and compare their data to identify potential strategies their community could implement to improve its built environment to promote active transportation by walking, biking, or other means.

Tips for setting up remote lab demonstrations or tasks: 

  • Consider common household items to recreate a lab experience
  • Add or find components online
  • Use online videos or DIY recordings of a demonstration
  • Present simulations and provide an analysis or breakdown of what is happening
  • Connect students to virtual labs or simulations
  • Provide instructions and expected outcomes
  • Demonstrate or show the process for collecting data
  • Provide raw data for students to analyze
  • Offline – engage students with assignments or discussions related to the remote lab experience

Whether you opt to use breakout rooms to facilitate collaborative tasks, quick polls to gather student input on lecture content, or non-verbal feedback options to take the pulse of your audience, the features of Zoom offer a means of interaction that can help you to bring students to the center of your remote teaching sessions. 

Adapted from slide presentation by Cyndie McCarley, Assistant Director of Instructional Design, Oregon State University Ecampus

Active Learning: What Does the Research Show?

We often hear about new approaches in teaching, and some can take on near-mythical status. That might be the case for active learning. It’s been widely touted as the “most effective” pedagogical approach, but unless you have time to dig through the research, it may not be easy to determine if this trend is applicable – or beneficial – to your teaching and discipline.

So what does the research say about active learning? This article provides a brief summary of research results for active learning applied in STEM subjects.

Why Use Active Learning?

Before we discuss why active learning is beneficial, let’s clarify exactly what active learning is. As opposed to passive learning, such as listening to a traditional lecture, active learning requires students to do something and think about what they are doing (Bonwell & Eison, 1991).

Much research supports the power and benefits of active learning. Students have better retention and understanding when they are actively involved in the learning process (Chickering & Gamson, 1987). Active engagement promotes higher order thinking, since it often requires students to evaluate, synthesize, and analyze information. Research indicates that students develop strong connections, apply concepts to authentic scenarios, and dive deeply into the content, often discovering an unexpected level of engagement that is exciting and stimulating (Nelson, 2002).

Does Active Learning Produce Better Outcomes in STEM?

Research indicates the answer is “yes!” In an introductory physics course, Harvard professor Eric Mazur (2009) found that his students were not able to answer fundamental physics scenarios or grasp basic concepts from traditional lectures. As a result, he stopped lecturing and has become an outspoken champion for active learning.

An organic chemistry class adopted active learning, resulting in significantly higher grades for students in the active classroom than in the control group, with the greatest effect coming from low-achieving students (Cormier and Voisard, 2018). In an introductory undergraduate physics course, two large student groups were compared. The active learning section showed greater attendance, more engagement, and more than double the achievement on an exam (Deslauriers, Schelew and Weiman, 2011).

In 2004, a skeptical Michael Prince (2004) researched the then-current literature on active learning to determine whether it offered consideration for engineering. He found that many active learning recommendations directly conflicted with historical engineering teaching practices. Methods like breaking lectures into small, topic-specific segments, interspersing lecture with discussion, using problem-based scenarios, or grouping students for collaborative learning were uncommon. Ultimately, Prince reluctantly concluded that the bulk of research evidence indicated that these types of teaching methods might foster better retention and enhance critical thinking.

What About Non-STEM Classes?

Although these findings are from research in STEM disciplines, active learning contributes to better grades, more engagement, increased student satisfaction and better retention in any topic (Allen-Ramdial & Campbell, 2014). Active learning tends to increase involvement for all students, not just those already motivated to learn. Peer-to-peer collaboration helps students solve problems and better understand more complex content (Vaughan et al., 2014). Research indicates that students learn more when they actively participate in their education and are asked to think about and apply their learning (Chickering & Gamson, 1987).

Try It Yourself!

The articles cited in this post offer a number of easy-to-implement active learning suggestions that are effective in ether a face-to-face or online classroom. Give one or two a try and see if your students are more engaged in the learning  process.

  • Offer opportunities for students to practice and examine concepts with peers, such as through debates.
  • Break lectures into small, granular topics and intersperse with questions or problem-solving activities based on real-world applications. Video technologies can easily accommodate this approach for online learning.
  • Structure quizzes or other activities to give immediate feedback. Answer keys and auto-graded assessments are available as a feature in virtually any learning management system.
  • Consider “flipping” the classroom by asking students to read or watch lecture videos before in-person class sessions.
  • Design activities that encourage students to work in small groups or collaborate with others.
  • Add a personal reflection component to help students uncover new ideas or insights.

Although no single definitive study has yet been published to unequivocally prove the efficacy of active learning, the body of evidence from many studies forms a compelling argument that it is does offer significant benefits (Weimer, 2012). Give it a try and see how active learning works in your discipline.

Susan Fein, Ecampus Instructional Designer | susan.fein@oregonstate.edu

References

  • Allen-Ramdial, S.-A. A., & Campbell, A. G. (2014, July). Reimagining the Pipeline: Advancing STEM Diversity, Persistence, and Success. BioScience, 64(7), 612-618.
  • Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.
  • Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.
  • Cormier, C., & Voisard, B. (2018, January). Flipped Classroom in Organic Chemistry Has Significant Effect on Students’ Grades. Frontiers in ICT, 4, 30. doi:https://doi.org/10.3389/fict.2017.00030
  • Deslauriers, L., Schelew, E., & Wieman, C. (2011, May). Improved Learning in a Large-Enrollment Physics Class. Science, 332, 862-864.
  • Mazur, E. (2009, January 2). Farewell, Lecture? Science, 323(5910), 50-51. Retrieved from http://www.jstor.org/stable/20177113
  • Nelson, G. D. (2002). Science for All Americans. New Directions for Higher Education, 119(Fall), 29-32.
  • Prince, M. (2004, July). Does Active Learning Work? A Review of the Research. Journal of Engineering Education, 223-231.
  • Vaughan, N., LeBlanc, A., Zimmer, J., Naested, I., Nickel, J., Sikora, S., . . . O’Connor, K. (2014). To Be or Not To Be. In A. G. Picciano, C. D. Dziuban, & C. R. Graham (Eds.), Blended Learning Research Perspectives (Vol. 2, pp. 127-144). Routledge.
  • Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Photo Credits

Auditorium – Photo by Mikael Kristenson on Unsplash
Engagement – Photo by Priscilla Du Preez on Unsplash
Hands – Photo by Headway on Unsplash
Library – Photo by Susan Yin on Unsplash
Contemplation – Photo by sean Kong on Unsplash

Active Learning Online – Part 2

The first post about active learning looked at how to include active learning in an online course. You heard about how a history professor used an interactive timeline. Each student added images, facts, and descriptions to the timeline, and the result was a visually-rich historical review. Students had fun while learning about facts and events. This is an example of collaboration and active learning at its best. The second example focused on interactive textbooks as an alternative to printed books. The Top Hat product combined words, images, video, and engaging activities to improve learning and make it more active.

In today’s post we look at two new active learning ideas: mind mapping and annotated reading. Although these two technologies are different from each other, they offer similar benefits. Mind mapping requires the student to visually depict a concept, process, or system. Students label relevant parts or steps, show how these are connected, and identify key relationships. Annotated reading, on the other hand, allows students to enter short comments to passages of text, which encourages peer-to-peer interaction and sharing. While reading, students identify confusing sections, ask (or answer) questions, and interact with others. Both methods actively engage students in the learning process and support them to apply and analyze course concepts.

A Picture is Worth…

You know the famous quip about pictures, so let’s consider how using a visually-based tool for active-learning can support online learners. Wikipedia defines mind mapping as “a diagram used to visually organize information.” Similar tools are concept maps and information maps.

Why are images important for learning? Mind maps help students understand concepts, ideas, and relationships. According to Wikipedia, a meta-study found that “concept mapping is more effective than ‘reading text passages, attending lectures, and participating in class discussions.'” One reason is because mind maps mimic how our brain works. They help us see the “big picture” and make important connections. Not only are mind maps visually appealing, they are also fun to create! Students can work alone or in teams.  This mind map about tennis is colorful and stimulating.

If you want to try mind mapping yourself, here’s a free tool called MindMup. There are many others available, some free and others with modest fees. The Ecampus team created an active learning resources mind map, made with MindMeister. Take a look. There are a lot of great ideas listed. Try a few!

Close Encounters

College student with an open textbookMost classes assign reading to students. Yet reading is a solo activity, so it offers a lower level of active learning. But there are ways to raise reading’s active learning value, with or without technology.

Using a technique called close reading, students get more active learning benefits. Close reading is a unique way to read, usually done with short sections of text. With careful focus, close reading helps students reach a deeper understanding of the author’s ideas, meaning and message.

Three students pointing to laptop screenIf you want to add technology, you can make reading even more active! Using an app called Perusall, reading becomes a collaborative activity. Perusall lets students add comments to the reading and see what others are saying. Students can post questions or respond. Instructors set guidelines for the number of entries and discover which content is most confusing. Originally built for the face-to-face classroom, Perusall is also an effective tool for online learning. Perusall is like social networking in the textbook. It helps students engage with materials and be more prepared to apply the concepts and principles to later assignments. Perusall can be used with or without the close reading technique. 

Want to Try?

Let us know if you have questions or want to try an idea. We are here to help! If you are already working with an Ecampus instructional designer, contact them to ask about these active learning technologies. Or send an email to me, susan.fein@oregonstate.edu, and I’ll be happy to point you in the right direction.

References

Images

Susan Fein, Ecampus Instructional Designer, susan.fein@oregonstate.edu