Do you ever get the sense that students posting in their online discussions haven’t really engaged with the reading materials for that week? One way to encourage active engagement with course readings is to have students annotate directly in the article or textbook chapter that they are assigned. While it is common to see students annotating in their paper copies of their textbooks or readings, these aren’t easily shared with their peers or instructor. Of course, students could snap a photo of their handwritten annotations and upload that as a reading assignment task, though that does require additional steps on the part of both the student and instructor, and there is no interaction with others in the course during that process. However, it is possible to have students annotate their readings completely online, directly in any article on the web or in their ebook textbook. With this process, the annotations can also be seen by others in the course, if desired, so that students can discuss the reading all together or in small groups as they are reading an article or book chapter online. The benefit to this type of annotation online includes components of active learning, increased student interaction, and accountability for students in engaging with the course materials.

Active Learning

The shift to active learning is a bit like going from watching a soccer game on TV to playing a soccer game. Likewise, reading passively and reading to learn are two different activities. One way to get students actively reading to learn is to ask them to make connections from the course materials to their own lives or society, for example, which they then make into annotations in their readings. Annotation tasks require students to take actions and articulate these connections, all without the pressure of a formal assessment. Furthermore, many students arrive at college not knowing how to annotate, so teaching basic annotation practices helps students become more active and effective learners (Wesley, 2012). 

Interaction

“Individuals are likely to learn more when they learn with others than when they learn alone” (Weimer, 2012). Discussion board activities are often where interaction with others in an online course takes place. However, rather than having students refer to a particular reading passage in their discussion board activity, they can simply highlight a passage and type their comments about it right there in the article, no discussion board assignment needed. Others in the course can also read participants’ annotations and reply. With some creative assignment design in Canvas, this can also be set up for small groups. Students may find this type of annotation discussion more authentic and efficient than using a discussion board tool to discuss a reading.

News article embedded in the assignment shows annotations made by specific students with a box to reply
Above, the online news article is embedded in the Canvas assignment. Students simply go to the assignment and can begin annotating. In the image above, a student highlights a passage to show what the annotation refers to. For a collaborative activity, students can reply to any peer’s comment. Alternatively, the instructor can set the annotations to be private, for more independent tasks.

Accountability

A popular way to ensure that students have done the reading is to give them a quiz. However, this is a solitary activity and is higher-stakes than asking students to make targeted annotations throughout a reading. It may make more sense to guide them through a reading with specific annotation tasks. Being explicit about what pieces of the reading students should focus on can help them understand what they need to retain from the reading assignment.

Possible Activities

  • Student-student interaction: Replace a discussion board activity with a collaborative annotation activity where students can annotate the article as they read. Then they can go back later in the week and reply to each other. 
  • Activate prior knowledge: Ask students to include one annotation related to what they already know about this topic.
  • Evaluate sources: Find a pop-science article in your discipline that includes weak support for arguments or claims, for example. Ask students to identify the sources of support in the arguments and challenge the validity of the support. Perhaps they could even be tasked with adding links to reliable sources of support for your discipline in their annotation comments. 

Nuts and Bolts

Two popular annotation tools are Hypothesis and Perusall. I would encourage you to test these out or ask your instructional designer about your needs and whether an annotation tool would be a good fit for your course learning outcomes. 

Resources:

Hypothesis

Perusall

Wesley, C. (2012). Mark It Up. Retrieved from The Chronicle of Higher Education: https://www.chronicle.com/article/Mark-It-Up/135166

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Welcome to the Webcam and Video Tips guide by Oregon State University Ecampus
This brief series of tips is meant to be a beginner’s overview for DIY home recording on webcam, with some additional options suggested if you want to take your video production even further.
Since this document may not cover every issue you encounter while acclimating to DIY video recording, we recommend contacting your school tech person for additional troubleshooting.

WHERE TO START

  • Internet Connection
    • Wired connection via ethernet cable is best
    • If wired connection is not possible, having a clear line of sight to wifi router will give the best wireless connection
    • Disconnect any wifi devices that are not in use or needed.
  • Computer Check
    • Determine if your computer meets minimum system requirements for streaming software
    • Close all non-essential programs to free up more computer resources
    • Disconnect any external monitors if you are on a laptop and it is running slowly
  • Testing Your Tech
    • Does your computer have a built in webcam or do you have a 3rd party webcam?
    • Identify where your microphone is and talk towards it
    • Test the webcam and audio settings BEFORE your first recording. 
    • Practice practice practice
      • The last recording will be better than the first
  • Making sure your voice is clear and easy to understand
    • Having a microphone helps with this
    • Smart phone earbuds have a built-in microphone that can help you with voice clarity
    • Airpods would also work when recording to an iPhone

PRESENCE AND ENVIRONMENT

  • Be aware of your environment.
    • Limit any background noise as much as possible.
    • Clean up your space and be aware of what is in the background of the video.
    • Rooms with carpets and drapes are best for audio.
    • Turn off lights and close windows that are behind you when you are recording.
    • If possible, turn on a light behind the camera.
    • Keep experimenting with lighting until you have a set up that works for you.

  • Try not to bump the desk, computer, camera, or microphone while recording.
    • Typing should also be avoided.
  • Do a test lecture and watch it.
    • See what works and what doesn’t.
    • If possible, get feedback from others
  • Practice
    • The more you practice, the more natural it will feel.
    • Run through what you want to say before you start recording.
  • Relax and be natural! Hopefully you are sharing knowledge that you are passionate about and we want that to show. (Remember that we are always our own worst critic, and your teaching team will be there to help you with constructive feedback on how to help students best enjoy and learn from these videos.)
  • Have notes in front of you while you’re recording. 
    • It is easy to get distracted or off topic, especially when you are uncomfortable.
    • Having notes in front of you while you record can help you stay on track.
    • These notes can be as vague or as detailed as you want, but avoid reading off of them directly and not looking at the camera.

DIGITAL NOTATION

GOING FURTHER WITH VIDEO PRODUCTION

  • For DIY video production, there are many ways to go about this!
    • The lowest barrier to recording on your own would be to use a smart phone attached to a tripod or other mount.
    • If you have access to a camcorder or DSLR, get out there and use it!
  • For smart phone video
    • Avoid handheld and invest in a tripod or smart phone / camera mount
    • If you have a decent internet connection for uploads, consider recording 1080p at 30fps
    • Use an external microphone whenever possible

ACCESSORIES TO CONSIDER IF RECORDING WITH A PHONE

Apps:

  • Filmic Pro – $14.99
    • Allows manual control of exposure and white balance, audio monitoring, and other useful features.

Audio:

  • Lavalier microphone – $18.99 
    • Highly recommended. Audio recorded from your phone’s microphone can be difficult to hear if you aren’t standing near the phone or if the location is noisy. 
  • Double lavalier microphone – $25.99
    • For when you have two people on camera. Both mic cable feed into the same phone, removing need to sync two audio sources. 
  • Audio cable extension – 10 ft. $9.95 or 20 ft. $15.95
    • For when you need to stand farther away from the camera.

Stabilization:

  • Selfie stick w/built-in tripod and Bluetooth remote – $23.99 (heavy duty, 51″ extended), $14.99 (27.6″ extended)
    • Terrific for self-recording in the field.
  • Combination hand grip/small tripod/tripod adapter – $8.89
    • Can be used as a hand grip for filming on-the-go or as a desktop tripod. Phone mount can be removed from the hand grip/tripod legs section, allowing you to mount your phone on most standard tripods.
  • Gimbal stabilizer – $94.99
    • Pricey, but will greatly increase the quality of your footage if you’re filming something that requires camera movement, such as a walk-and-talk interview or a field trip video.
  • Creative ways to mount a smart phone with household items:

 

ADD-ONS / TIPS AND TRICKS

  • If you would like to have access to a teleprompter as you record video, consider one of the following:
  • Here are some sound improvements to consider to reduce echo in your recordings.
    • Add blankets or blinds on walls to reduce echo.
    • Record in the smallest room possible.
    • Avoid rooms with hardwood floors.

Lighting for video

  • Turn a window or glass door into a soft “Key Light” by hanging a cheap, frosted shower curtain over the window. 

 

Authors: Jason Jones, Drew Olson, and Sammi Lukas, with special thanks to Victor Yee for technical support with the images.

Facilitating Active Learning with Zoom

connected learners image
Image by Gerd Altmann from Pixabay

By Christine Scott, Instructional Design Specialist, Oregon State University Ecampus

So you managed to get your face-to-face courses up and running remotely in the midst of a global pandemic. You’ve secured your Zoom sessions to avoid unwanted disruptions, your students are in their virtual seats, and you’ve successfully delivered a few lectures. So what’s next?

Now that you have students’ attention, you may find that you’re ready to focus on transforming your synchronous session into a space for active learning to take place. It’s no secret that students learn better when they are actively engaged in the learning process. The question is how that translates to a remote Zoom session. Is it even possible to recreate the dynamic learning environment of your face-to-face class? 

To answer that question, we can look to best practices in online pedagogy. We know that students in online environments experience better outcomes and higher satisfaction when there are opportunities for active learning and engagement with the instructor, the course content, and each other. Fortunately, Zoom has several tools we can leverage to incorporate learner engagement in the remote setting.

Creating Opportunities for Active Learning

To set the stage for active learning, consider breaking your content delivery into shorter chunks, punctuated by periods of activity. Ask students to do something meaningful to help them engage with the content. This approach not only supports learning, but it also encourages accountability. If students understand they will be called upon to complete a task, they are more likely to be motivated to engage with the lecture.

During your synchronous session, you might ask students to: 

  • Respond to a question
  • Take notes to share
  • Create a list of examples or discussion questions to share afterward on the Canvas discussion board
  • Prepare a reflection to submit after the fact
  • Solve a problem

Breakout Rooms in Zoom

Breakout rooms are easy to set up and operate in Zoom. These small group spaces are useful as a means of incorporating peer-to-peer interaction and feedback into your remote course. They can also promote inclusion by providing an opportunity for low-stakes participation for learners who may be reluctant to chime in during large group sessions. Finally, breakout session activities can serve as a tool for formative assessment as the activities students complete can help instructors gauge achievement of the learning outcomes. 

Creating Breakout Room Tasks

Breakout room tasks can be carried out on-the-fly in the synchronous session, or they can form part of a more complex assignment. You might provide a prompt, file, or a link as a springboard for spontaneous discussion in small groups. Alternatively, you might flip your remote classroom by providing students with a pre-activity to complete before the live session. For further engagement, you might have students build on what they produce in their breakout rooms through an asynchronous submission in Canvas. 

When creating breakout room tasks: 

  • Set clear expectations. Any explanation of expectations should include a clear relationship to learning outcomes. Provide a code of conduct for interaction, performance expectations related to the task, etc.
  • Prepare instructions in advance. Provide students with a clear task and deliverable. Include any resources needed to complete the task. Outline the deliverable or provide a model so that students understand what is expected upon reconvening with the whole class. 
  • Guide students in how to self-organize. Assign roles or ask students to assign them (host facilitator, notetaker, timekeeper, and speaker who reports back to the class). 
  • Provide technical support. A tip sheet for the technology can be helpful in case they get stuck, for example. 
  • Monitor. Circulate as you would in your face-to-face class by joining breakout rooms to check in. 
  • Report back. Ask students to present a summary slide (groups might contribute a slide to a class google presentation), share group’s response, etc. Follow up with whole-group sharing in some form. 

Sample Breakout Room Activity Types

  • Small group discussion
  • Think – Pair – Share
  • Group project
  • Data analysis/text analysis
  • Debate preparation
  • Simulation practice – mock interview
  • Peer feedback
  • Jigsaw activity

Polling 

Another option for interactivity during lectures is the Zoom poll. Polls are easy to launch and are a handy tool for icebreakers at the beginning of sessions, to check for understanding, or to allow students to have input on lecture content. They can be created as anonymous surveys or as simple question responses. 

Fig. 1 This example demonstrates how polling could be used to pose a question and elicit an anonymous response from participants.

Non-verbal Feedback in Zoom 

Sample of Nonverbal feedback icons from Zoom
Nonverbal Feedback options in Zoom

If you miss the non-verbal feedback of a live audience in a face-to-face setting, you might consider encouraging students to use Zoom’s non-verbal feedback options available in the chat window. This tool allows students to input quick yes/no responses to questions, ask for the speaker to speed up or slow down, indicate that they need a break, and more. 

Sample of a music activity
Fig 2. Consider how the simplicity of non-verbal feedback indicators might be useful in a cognitive psychology course for student feedback while listening to audio clips. Students could be asked to use the thumbs up when they can name the familiar melody mixed with interfering tones, for example.

 

Facilitating Lab Experiences Remotely

Live lab activities provide another opportunity for interactive experiences in Zoom. The following examples of lab tasks that implement active learning principles are taken from existing online courses through Oregon State University Ecampus. Consider how similar field and lab experiences could be used to engage learners in your remote courses. 

Sample Experiences

image from science course

Science Education

In this example from a phenology course, students observe and record specific elements in a local natural area over the course of the term. After watching an instructor-led demonstration, learners record key elements based on Nature’s Notebook. They then share their data, photos, and drawings with the class to create a collective body of observations. Students then contribute their observations to a national phenology network. 

Public Health

pedometer walker
Image source: pixfuel.com, cc

Learners in this course collect and analyze authentic data through a public health topic: the human-built environment. Students wear a pedometer to track how many steps they take over a 48-hour period. They ask other members of their family or community to track the same information. Students gather, analyze, and compare their data to identify potential strategies their community could implement to improve its built environment to promote active transportation by walking, biking, or other means.

Tips for setting up remote lab demonstrations or tasks: 

  • Consider common household items to recreate a lab experience
  • Add or find components online
  • Use online videos or DIY recordings of a demonstration
  • Present simulations and provide an analysis or breakdown of what is happening
  • Connect students to virtual labs or simulations
  • Provide instructions and expected outcomes
  • Demonstrate or show the process for collecting data
  • Provide raw data for students to analyze
  • Offline – engage students with assignments or discussions related to the remote lab experience

Whether you opt to use breakout rooms to facilitate collaborative tasks, quick polls to gather student input on lecture content, or non-verbal feedback options to take the pulse of your audience, the features of Zoom offer a means of interaction that can help you to bring students to the center of your remote teaching sessions. 

Adapted from slide presentation by Cyndie McCarley, Assistant Director of Instructional Design, Oregon State University Ecampus

Narrative and World-Building

For this post, I will focus on two simple strategies you can use to improve motivation and engagement in your online course, narrative and world building. These terms are used frequently in games, as well as in literature, film and other domains. They are a powerful tool, easily applied to your existing course material or as you develop new content.puzzle world

If you want some background about where my thinking is coming from, check out my last blog post, Games as a Model for Motivation and Engagement, Part 1, where I take a deeper dive into gaming and Self-Determination Theory. I would also recommend a post by Dr. Meghan Naxer, Self-Determination Theory and Online Education: A Primer.

There are two kinds of world building I’d like to talk about; instructor-created narrative and student-created narrative. To set the tone for our thinking about this, I’ll start with a quote from Designing for Motivation.

“… if you increase autonomy then engagement will improve, if you increase competence then motivation will increase, and if you increase relatedness then wellbeing will be enhanced–these needs become the controllers we tweak and adjust to iterate on and improve experience.”
(Peters, D., Calvo, R. A., & Ryan, R. M. (2018) Designing for Motivation, Engagement and Wellbeing in Digital Experience. Frontiers in Psychology, 28 May 2018. DOI: 10.3389/fpsyg.2018.00797)

So how can we use world building to ‘tweak’ these three controllers?

Instructor-Created Narrative

role-playing game diceInstructor-created narrative refers to the world or environment created by the course builder and determined by the story they are telling about that world. This world building can be for a particular course activity, but also keep in mind that your entire online course is a learning environment and you, as the course builder, have significant influence over how that world is curated. A colleague recently described how an instructor begins their course with the phrase, “Welcome scholars”. This sets a tone that is a competence-supportive environment with just two words. Tone is a commonly used tool for world building across many domains.

As a simple entry point for world building, I’ll start with a classic type of game, role-playing.

Brainstorm Exercise

Consider setting up a role-playing scenario for one of your existing activities or assignments. What is the outcome you expect students to achieve from this activity? Imagine a situation (or world) where that outcome exists or can be applied. What does that situation look like? Now, imagine you are a student in that situation, what does this world look like? (See what I did there? Role playing!) How will your student interact with that world to achieve your outcome? Take a minute or two to note your answers to these questions. This is a good way to begin sketching out your narrative. Once your sketch is complete, you can begin moving the parameters and rubrics of your existing activity into this world.

The world you create for your scenario can be the ‘real world’ in a particular time period, a hypothetical political situation, a business/client relationship regarding a product, or a hypothetical world to resolve a physics problem. Here are some ways you can frame your thinking as you practice the above exercise:

  • Take the tools you have provided in the course content (competence) and use them to analyze the following situation (world building). “How would you apply what you learned this week to the following situation?”
  • Even better, “How will the situation change as a result of your decisions?”

A small change in wording can provide big changes in thinking. In the second bullet point, we have moved from applying the week’s content to a given situation to a personalized critical analysis.

Student-Created Narrative

The other side of the coin is allowing students to build on your narrative, or create their own. This is where you significantly impact autonomy. This is your world, you create the rules. You set the parameters that will focus student thinking toward the outcomes you hope for them to reach. The rules you set will determine the level of autonomy the student experiences.

Brainstorm Exercise

For this exercise, you can continue with the role-playing scenario you built in the previous Brainstorm Exercise or choose another existing activity from a course. Let’s brainstorm some ways you can add autonomy to this activity.

A simple addition to the role-playing scenario we built previously would be to allow students to choose the role they will play. You have built a narrative, now let the student choose the character they will play to build on that narrative. If you need to keep things more focused, it is totally acceptable to restrict the roles to a list of options. Even with restrictions, is it possible for students to choose the gender, race or economic background of their character? What other characteristics can you think of that will help a student take ownership of the role?

For other kinds of activities, consider giving students the creative freedom to choose and build their own narrative. The instructor still defines the rules of the world and sets the outcome and rubrics for the activity. Can you open up the choices a student has to meet these outcomes? Allow students the autonomy to take ownership of how they get to your outcome, using your rubric as a guide.

For example, select a concept that was covered in the course. In your activity, allow students to choose where and how that concept can be applied. Let them build the narrative around the concept. Conversely, select a setting in the world, much like you would for the role-playing scenario. Allow students to choose the course concepts they want to apply in that setting and build a narrative around that. This strategy lends itself well to case studies. Rather than taking on a specific role, students become story creators, while still working with instructional concepts and within the rules defined by the instructor.

Group World Building

As I mentioned in my previous post, group work and community building (as modeled by gaming communities) are great ways to increase relatedness in a course. Community members are able to share their competence and, in turn, feel valued by that community. This is another great support of motivation.

All of the strategies discussed above can be applied to group work. You can set up the same role-playing scenarios, but this time multiple students will take on different roles and interact in those roles within their group community. Relatedness is impacted as decisions and actions taken by one student will affect the world that is being collaboratively built. Here are two examples from a media course I recently helped develop. They both reflect the range of complexity group world building can undertake.

Pitch Game (Group Discussion)

For your Initial Post in this discussion, pitch a new television show. Follow the parameters presented in class; including X+Y claims, audience description, sketch of the show’s audience and the ideal network for the show. For your Peer Response, you will take on the role of media buyer. Choose which network or streaming service you work for. Review all available show pitches. Decide which show you will purchase. Reply to the show you wish to purchase; identify the network you represent and write your reasoning why you want to make the purchase. Use course material to support your decision.

Trial Simulation (Group Project)

To better understand the ways in which civil law shapes the media ecosystem, we will enact a short trial simulation. The court of the Honorable Judge is an appeals court: this means that the FACTS of the case were decided by the TRIAL court. The question that will be litigated in class regards the law and the interpretation of those facts.

One student will take on the role of Plaintiff, another will be Defense and a third member of the group will be the Judge. Over the next two weeks, you will follow the posted schedule to present your arguments and answer questions from the Judge. Before proceeding, review the Debate Rules and Trial Facts documents. You will be expected to cite actual Supreme Courts cases to support your claims.

Hopefully, this blog has provided some simple entry points for using world building to increase autonomy, build competence, and improve relatedness in a course to improve motivation and engagement. I would love to hear what you come up with in the Brainstorm Exercises.

Dice Image: “DSCF5108” by joelogon is licensed under CC BY-SA 2.0
World Building Image: puzzle-ball-1728990_1920 from Pixabay

One of the most common questions I get as an Instructional Designer is, “How do I prevent cheating in my online course?” Instructors are looking for detection strategies and often punitive measures to catch, report, and punish academic cheaters. Their concerns are understandable—searching Google for the phrase “take my test for me,” returns pages and pages of results from services with names like “Online Class Hero” and “Noneedtostudy.com” that promise to use “American Experts” to help pass your course with “flying grades.” 1 But by focusing only on what detection measures we can implement and the means and methods by which students are cheating, we are asking the wrong questions. Instead let’s consider what we can do to understand why students cheat, and how careful course and assessment design might reduce their motivation to do so.

A new study published in Computers & Education identified five specified themes in analyzing the reasons students provided when seeking help from contract cheating services (Amigud & Lancaster, 2019):

  • Academic Aptitude – “Please teach me how to write an essay.”
  • Perseverance – “I can’t look at it anymore.”
  • Personal Issues – “I have such a bad migraine.”
  • Competing Objectives – “I work so I don’t have time.”
  • Self-Discipline – “I procrastinated until today.”

Their results showed that students don’t begin a course with the intention of academic misconduct. Rather, they reach a point, often after initially attempting the work, when the perception of pressures, lack of skills, or lack of resources removes their will to complete the course themselves. Online students may be more likely to have external obligations and involvement in non-academic activities. According to a 2016 study, a significant majority of online students are often juggling other obligations, including raising children and working while earning their degrees (Clinefelter & Aslanian, 2016).

While issues with cheating are never going to be completely eliminated, several strategies have emerged in recent research that focuses on reducing cheating from a lens of design rather than one of punishment. Here are ten of my favorite approaches that speak to the justifications identified by students that led to cheating:

  1. Make sure that students are aware of academic support services (Yu, Glanzer, Johnson, Sriram, & Moore, 2018). Oregon State, like many universities, offers writing help, subject-area tutors and for Ecampus students, a Student Success team that can help identify resources and provide coaching on academic skills. Encourage students, leading up to exams or big assessment projects, to reach out during online office hours or via email if they feel they need assistance.
  2. Have students create study guides as a precursor assignment to an exam—perhaps using online tools to create mindmaps or flashcards. Students who are better prepared for assessments have a reduced incentive to cheat. Study guides can be a nongraded activity, like a game or practice quiz, or provided as a learning resource.
  3. Ensure that students understand the benefits of producing their own work and that the assessment is designed to help them develop and demonstrate subject knowledge (Lancaster & Clarke, 2015). Clarify for students the relevance of a particular assessment and how it relates to the weekly and larger course learning outcomes.
  4. Provide examples of work that meets your expectations along with specific evaluation criteria. Students need to understand how they are being graded and be able to judge the quality of their own work. A student feeling in the dark about what is expected from them may be more likely to turn to outside help.
  5. Provide students with opportunities throughout the course to participate in activities, such as discussions and assignments, that will prepare them for summative assessments (Morris, 2018).
  6. Allow students to use external sources of information while taking tests. Assessments in which students are allowed to leverage the materials they have learned to construct a response do a better job of assessing higher order learning. Memorizing and repeating information is rarely what we hope students to achieve at the end of instruction.
  7. Introduce alternative forms of assessment. Creative instructors can design learning activities that require students to develop a deeper understanding and take on more challenging assignments. Examples of these include recorded presentations, debates, case studies, portfolios, and research projects.
  8. Rather than a large summative exam at the end of a course, focus on more frequent smaller, formative assessments (Lancaster & Clarke, 2015). Provide students with an ongoing opportunity to demonstrate their knowledge without the pressure introduced by a final exam that accounts for a substantial portion of their grade.
  9. Create a course environment that is safe to make and learn from mistakes. Build into a course non-graded activities in which students can practice the skills they will need to demonstrate during an exam.
  10. Build a relationship with students. When instructors are responsive to student questions, provide substantive feedback throughout a course and find other ways to interact with students — they are less likely to cheat. It matters if students believe an instructor cares about them (Bluestein, 2015).

No single strategy is guaranteed to immunize your course against the possibility that a student will use some form of cheating. Almost any type of assignment can be purchased quickly online. The goal of any assessment should be to ensure that students have met the learning outcomes—not to see if we can catch them cheating. Instead, focus on understanding pressures a student might face to succeed in a course, and the obstacles they could encounter in doing so. Work hard to connect with your students during course delivery and humanize the experience of learning online. Thoughtful design strategies, those that prioritize supporting student academic progress, can alleviate the conditions that lead to academic integrity issues.


1 This search was suggested by an article published in the New England Board of Higher Education on cheating in online programs. (Berkey & Halfond, 2015)

References

Amigud, A., & Lancaster, T. (2019). 246 reasons to cheat: An analysis of students’ reasons for seeking to outsource academic work. Computers & Education, 134, 98–107. https://doi.org/10.1016/j.compedu.2019.01.017

Berkey, D., & Halfond, J. (2015). Cheating, student authentication and proctoring in online programs.

Bluestein, S. A. (2015). Connecting Student-Faculty Interaction to Academic Dishonesty. Community College Journal of Research and Practice, 39(2), 179–191. https://doi.org/10.1080/10668926.2013.848176

Clinefelter, D. D. L., & Aslanian, C. B. (2016). Comprehensive Data on Demands and Preferences. 60.

Lancaster, T., & Clarke, R. (2015). Contract Cheating: The Outsourcing of Assessed Student Work. In T. A. Bretag (Ed.), Handbook of Academic Integrity (pp. 1–14). https://doi.org/10.1007/978-981-287-079-7_17-1

Morris, E. J. (2018). Academic integrity matters: five considerations for addressing contract cheating. International Journal for Educational Integrity, 14(1), 15. https://doi.org/10.1007/s40979-018-0038-5

Yu, H., Glanzer, P. L., Johnson, B. R., Sriram, R., & Moore, B. (2018). Why College Students Cheat: A Conceptual Model of Five Factors. The Review of Higher Education, 41(4), 549–576. https://doi.org/10.1353/rhe.2018.0025

game controller on work desk

What can instructional designers learn from video game design? This might seem like a silly question—what do video games have to do with learning? Why might we use video games as an inspiration in pedagogy? As instructional designers, faculty often come to us with a variety of problems to address in their course designs—a lack of student interaction, how to improve student application of a given topic, and many more. While there are many tools at our disposal, I’d like to propose an extra tool belt for our kit: what if we thought more like game designers?

Video games excel at creating engaging and motivating learning environments. Hold on a minute, I hear you saying, video games don’t teach anything! In order for games to onboard players, games teach players how to navigate the “physical” game world, use the game’s controls, identify the rules of what is and is not allowed, interpret the feedback the game communicates about those rules, identify the current outcome, form and execute strategies, and a large variety of other things depending on the game, and that’s usually just the tutorial level!

What is the experience like in a learning environment when students begin an online course? They learn how to navigate the course site, use the tools necessary for the course, identify the assessment directions and feedback, identify the short-term and long-term course outcomes, learn material at a variety of different learning levels, and large variety of other things depending on the class, and that’s usually just the first week or two! Sound familiar? What are some things that video games do well during this on-boarding/tutorial to setup players for success? And how might instructional designers and faculty use these elements as inspiration in their classes?

The following list includes nine tips on how game design tackles tutorial levels and how these designs could be implemented in a course design:

  1. Early tasks are very simple, have low stakes, and feedback for these tasks is often very limited—either “you got it” or “try again”. Consider having some low-stakes assignments early in the course that are pass/fail.
  2. If negative feedback is received (dying, losing a life, failing a level, etc.), it is often accompanied by a hint, never an answer. If you have a MCQ, do not allow students to see the correct answer, but consider adding comments to appear if a student selects an incorrect answer that offers hints.
  3. If negative feedback is received, the game does not move on until the current outcome is achieved. Allow multiple attempts on quizzes or assignments and/or setup prerequisite activities or modules.
  4. Game levels allow for flexible time—different players complete levels at different rates. Design tasks with flexible due dates. Many courses already allow some flexibility for students to complete activities and assessments within weekly modules—can that flexibility be extended beyond a weekly time frame?
  5. Tutorial quests usually have predetermined and clearly communicated outcomes. All objectives are observable by both the game and the player. Create outcomes and rubric conditions/language that are self-assessable, even if the instructor will complete the grading.
  6. Tasks and game levels are usually cumulative in nature and progress using scaffolded levels/activities. Consider breaking up large assignments or activities into smaller, more cumulative parts.
    • For example, the first quest in The Elder Scrolls V: Skyrim is a great example for Nos. 5 and 6 above. It consists of four required objectives and two optional objectives:
      • Make your way to the keep.
      • Enter the Keep with Hadvar or Ralof.
      • Escape Helgen.
      • Find some equipment (Hadvar) / Loot Gunjar’s body (Ralof).
        • Optional: Search a barrel for potions.
        • Optional: Pick the lock of a cage.
  7. There are varying degrees of assumed prior knowledge, but no matter what, everyone participates in the tutorial levels. They are not optional. Consider saving optional “side quests” for later in a course or having an introductory module for everyone, regardless of skill level.
  8. The “tutorial” process usually ends when all skills have been introduced, but some games continue to add new skills throughout, inserting mid-game tutorials when necessary. Return to some of the design ideas on this list if a course introduces new topics throughout.
  9. After a requisite number of skills are mastered and players are able to fully play the game, the only major changes in design are increases in difficulty. These changes in difficulty are usually inline with maintaining a flow state by balancing the amount of challenge to the skill level of the player. As course material and activities increase in difficulty, make sure there are ample opportunities for students to develop their abilities in tandem.

Games are a great model for designing engaging learning experiences, with significant research in psychology and education to back it up. By understanding how games are designed, we can apply this knowledge in our course designs to help make our courses more motivating and engaging for our students.

Additional Resources

Want to know more about the psychology of why these designs work? Start with these resources:

Active Learning: What Does the Research Show?

We often hear about new approaches in teaching, and some can take on near-mythical status. That might be the case for active learning. It’s been widely touted as the “most effective” pedagogical approach, but unless you have time to dig through the research, it may not be easy to determine if this trend is applicable – or beneficial – to your teaching and discipline.

So what does the research say about active learning? This article provides a brief summary of research results for active learning applied in STEM subjects.

Why Use Active Learning?

Before we discuss why active learning is beneficial, let’s clarify exactly what active learning is. As opposed to passive learning, such as listening to a traditional lecture, active learning requires students to do something and think about what they are doing (Bonwell & Eison, 1991).

Much research supports the power and benefits of active learning. Students have better retention and understanding when they are actively involved in the learning process (Chickering & Gamson, 1987). Active engagement promotes higher order thinking, since it often requires students to evaluate, synthesize, and analyze information. Research indicates that students develop strong connections, apply concepts to authentic scenarios, and dive deeply into the content, often discovering an unexpected level of engagement that is exciting and stimulating (Nelson, 2002).

Does Active Learning Produce Better Outcomes in STEM?

Research indicates the answer is “yes!” In an introductory physics course, Harvard professor Eric Mazur (2009) found that his students were not able to answer fundamental physics scenarios or grasp basic concepts from traditional lectures. As a result, he stopped lecturing and has become an outspoken champion for active learning.

An organic chemistry class adopted active learning, resulting in significantly higher grades for students in the active classroom than in the control group, with the greatest effect coming from low-achieving students (Cormier and Voisard, 2018). In an introductory undergraduate physics course, two large student groups were compared. The active learning section showed greater attendance, more engagement, and more than double the achievement on an exam (Deslauriers, Schelew and Weiman, 2011).

In 2004, a skeptical Michael Prince (2004) researched the then-current literature on active learning to determine whether it offered consideration for engineering. He found that many active learning recommendations directly conflicted with historical engineering teaching practices. Methods like breaking lectures into small, topic-specific segments, interspersing lecture with discussion, using problem-based scenarios, or grouping students for collaborative learning were uncommon. Ultimately, Prince reluctantly concluded that the bulk of research evidence indicated that these types of teaching methods might foster better retention and enhance critical thinking.

What About Non-STEM Classes?

Although these findings are from research in STEM disciplines, active learning contributes to better grades, more engagement, increased student satisfaction and better retention in any topic (Allen-Ramdial & Campbell, 2014). Active learning tends to increase involvement for all students, not just those already motivated to learn. Peer-to-peer collaboration helps students solve problems and better understand more complex content (Vaughan et al., 2014). Research indicates that students learn more when they actively participate in their education and are asked to think about and apply their learning (Chickering & Gamson, 1987).

Try It Yourself!

The articles cited in this post offer a number of easy-to-implement active learning suggestions that are effective in ether a face-to-face or online classroom. Give one or two a try and see if your students are more engaged in the learning  process.

  • Offer opportunities for students to practice and examine concepts with peers, such as through debates.
  • Break lectures into small, granular topics and intersperse with questions or problem-solving activities based on real-world applications. Video technologies can easily accommodate this approach for online learning.
  • Structure quizzes or other activities to give immediate feedback. Answer keys and auto-graded assessments are available as a feature in virtually any learning management system.
  • Consider “flipping” the classroom by asking students to read or watch lecture videos before in-person class sessions.
  • Design activities that encourage students to work in small groups or collaborate with others.
  • Add a personal reflection component to help students uncover new ideas or insights.

Although no single definitive study has yet been published to unequivocally prove the efficacy of active learning, the body of evidence from many studies forms a compelling argument that it is does offer significant benefits (Weimer, 2012). Give it a try and see how active learning works in your discipline.

Susan Fein, Ecampus Instructional Designer | susan.fein@oregonstate.edu

References

  • Allen-Ramdial, S.-A. A., & Campbell, A. G. (2014, July). Reimagining the Pipeline: Advancing STEM Diversity, Persistence, and Success. BioScience, 64(7), 612-618.
  • Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.
  • Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.
  • Cormier, C., & Voisard, B. (2018, January). Flipped Classroom in Organic Chemistry Has Significant Effect on Students’ Grades. Frontiers in ICT, 4, 30. doi:https://doi.org/10.3389/fict.2017.00030
  • Deslauriers, L., Schelew, E., & Wieman, C. (2011, May). Improved Learning in a Large-Enrollment Physics Class. Science, 332, 862-864.
  • Mazur, E. (2009, January 2). Farewell, Lecture? Science, 323(5910), 50-51. Retrieved from http://www.jstor.org/stable/20177113
  • Nelson, G. D. (2002). Science for All Americans. New Directions for Higher Education, 119(Fall), 29-32.
  • Prince, M. (2004, July). Does Active Learning Work? A Review of the Research. Journal of Engineering Education, 223-231.
  • Vaughan, N., LeBlanc, A., Zimmer, J., Naested, I., Nickel, J., Sikora, S., . . . O’Connor, K. (2014). To Be or Not To Be. In A. G. Picciano, C. D. Dziuban, & C. R. Graham (Eds.), Blended Learning Research Perspectives (Vol. 2, pp. 127-144). Routledge.
  • Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Photo Credits

Auditorium – Photo by Mikael Kristenson on Unsplash
Engagement – Photo by Priscilla Du Preez on Unsplash
Hands – Photo by Headway on Unsplash
Library – Photo by Susan Yin on Unsplash
Contemplation – Photo by sean Kong on Unsplash

So you’ve scheduled your first video shoot with Ecampus. Great! We can’t wait to work with you. Here are answers to a few questions we commonly receive from instructors.

How can I prepare for my video shoot?

Rehearse! And this doesn’t have to be a bunch of work, just run through your piece once or twice before the shoot.

If you’d like for the finished video to include any additional graphics, photos or video, please let a member of the video team or your instructional designer know in advance of the shoot so that we can plan accordingly.

Should I write a script?

Maaaaaaaybe. It’s up to you. Some people prefer to work from a teleprompter, others prefer to wing it. We always suggest going with your comfort zone. If you would like to work with a teleprompter, please send your script or bulleted list to ecampus.productions@oregonstate.edu at least one day before your shoot.What should I wear?

Wear clothes that are comfortable and make you feel good about yourself…that’s the priority. Feel free to show off your personality and have fun with it.

Here are a few guidelines:

  • Avoid wearing plain white. It’s distracting against a black background, and gets lost in a white background.
  • If you’ll be filming against a black background, you’ll want to avoid wearing black, lest you appear to be a floating head and arms in your video. Also, black or really dark clothing can sometimes cause more shadowing on the face, accentuating wrinkles and aging the subject.
  • Instead, you might consider a medium-dark blue or gray. Or even better, go for a rich, solid color.
  • Also, avoid tight lines and patterns. These types of patterns cause a distracting optical effect called moiré where the pattern appears to move. Larger patterns, like plaid, look fine.
  • Finally, please avoid noisy jewelry and accessories as the microphone may be able to pick up the noise.

Oh gosh! Now that I’m here and I’m on camera, I have no idea what to do with my hands.

Think of the camera as another person. How do you move when you’re talking to somebody? If you tend to gesture when you speak, then please do! The movement will add energy to the video and help to convey your excitement about the topic.

Another option is to hold a prop. Just be sure that your prop is relevant to the video so that you don’t confuse the viewer.

If you prefer to be more still, that’s also great. Just be sure to maintain open body language and avoid crossing your arms in front of you or behind you.

This terrific Wistia article talks about the science behind why your gestures look so awkward on camera and dives into the hand thing a bit more, explains why we feel so awkward on camera, and suggests some ways to feel more comfortable at your video shoot.

That’s A Wrap!

If you have any questions, concerns, or ideas to share, please contact the Ecampus video team at ecampus.productions@oregonstate.edu. Looking forward to working with you!

 

“…expertise is learned from prolonged experience with good feedback on mistakes.” – Daniel Kahneman

Students are eager to receive meaningful feedback quickly. With hopes of improving their class performance, timely and substantive feedback is essential to helping students get on track before it is too late. Yet, knowing this doesn’t change why feedback and grading sometimes gets put off, despite our best intentions – it can appear daunting and time consuming.

8 ideas on how to take the sting out of providing feedback:

Self-checks

Not all feedback requires your intervention or even a grade. Can you set-up an activity where students can check their understanding and get immediate feedback? A simple solution is to create a short practice activity (e.g. multiple choice quiz, drag and drop interactive) which provides immediate results. The prompt feedback supports students to move on to more challenging work with confidence. In some systems, including Canvas, you can provide comments for wrong answers that clues them into where they could find the right answer.

Screencasts

As a student, I really enjoyed a course where the faculty member used screencasts to give feedback. I never had to schedule time during her office hours to feel like we were sitting down and having a conversation about my work. Her tone was approachable, I could rewatch the feedback to make sure I understood it, and it was so personal. It was also a nice break from reading text.

When I later heard her share at a faculty training event that she used this method because it was faster than providing text feedback, I was shocked – that had never occurred to me as a student! She has found that by using screencasts she doesn’t have to labor over editing her words to make sure what she is trying to convey doesn’t get interpreted the wrong way. She saves a lot of time by making them intentionally brief and informal, all while providing students an experience that feels relatable and relaxed.

You can check out this Faculty Focus article on Using Screencasts for Formative and Summative Assessment to learn more.

Campus Partners

Could you require students to see a campus partner, like a writing center, to review a first draft of an assignment? Of course, you will want to discuss your idea with these offices before designing your assignments. If they are willing, they can help you by catching a lot of simple errors in students’ work, so you can focus more of your grading on the content in a later iteration. Also, feedback from multiple people broadens the scope of perspectives a student receives, which deepens their learning.

Here at OSU, you might contact the Ecampus Student Success Counselors, OSU Library, Math Learning Center, Online Writing Lab, or other offices to chat about options for partnership.

Self-assessments

You might be surprised how honest students will be about their own work if they are given the opportunity to grade themselves. Providing a rubric and asking students to respond to each criteria can be a helpful way to encourage students to take a moment to step back, reflect on what they have done, and provide suggestions to themselves on how they could improve.

Group feedback

Providing group feedback quickly allows the ‘go getters’ to get started with at least some advice from you while you are finishing giving more specific grades and comments. While you want to use group feedback sparingly, because students need personalized feedback that relates to their specific work, it can help you to prevent a lot of individual email questions. If you are able to offer group feedback that notes class-wide trends more quickly than individual feedback, it shows that you are reviewing the work and paying attention to how students are doing.

Text expanders

Do you often find yourself writing the same types of comments for students over and over? Text expanders allow you to write a small string of text and it expands into a larger piece of text. Some ideas:

  1. APA => Please review the APA in-text citation guidelines at Purdue OWL.
  2. Rubric => See the rubric requirements regarding this section.
  3. Great => This is great work – way to go!
  4. Research => What research are you using as a basis for your claim? What evidence can you provide for this claim?
  5. Replies => This discussion forum required two replies. Please make sure to post at least two replies in subsequent discussion forums to receive full credit.

If you are unsure where to start, check-out this instructor video You Type Too Much! Use a Text Expander To Save Time from Cengage Learning (duration 01:59).

Social pressure

Consider leveraging social pressure through assignments that are public, like e-portfolios or blogs. It’s amazing how much our work improves when we think it will be viewed by others. If students are presenting their work in a public forum, they may take more ownership over the quality, which reduces how much effort is required by you to grade. You will want to check with your instructional designer on how to do this while still adhering to FERPA.

Chocolate

I hate looking at finances, so when it is time to go over my budget, I put on relaxing music and treat myself to a favorite chocolate. If grading is painful, creating a positive ritual around it can make it easier to engage. Are there ways you can make your environment more inviting and focused?

If you are interested in exploring any of these ideas in more detail, contact your instructional designer to discuss what could work for your course and your teaching style. Remember, meaningful feedback will help your students focus on the learning, rather than just the grade.

By: Amy Munger

Fall term is in full swing, and right now students are at their best in terms of motivation and anticipation of a good term and academic year ahead. In a few weeks, however, the motivation that students started out with in September may change to disengagement as the term progresses. Some students, for example, have the misconception that online courses are easier than face-to-face courses. This misunderstanding can cause them to feel overwhelmed and disengaged when they realize that their online courses are just as rigorous as their face-to-face courses. Now is the time to get a jump on ways to spot disengaged students — and what to do about it — before they give up and drop that fabulous online course that you are working so hard on. Here are some key takeaways from a recent workshop on this topic that I attended through the Online Learning Consortium: Strategies for Increasing Interaction & Engagement Self-Paced Workshop

Signs that a student is disengaged:

  • Discussion posts are too short
  • The student rarely logs into the course
  • Little or no time spent participating in activities or interacting with other students
  • Missing or late assignments

Disengaged students may feel isolated and reluctant to reach out for help. Here’s what you can do:

  • Connect with students early and often at the beginning of the course.
  • In your communications with students or in your welcome video, convey to students a sense of community and that the course is a safe space for learning.
  • Encourage students to post their own introductory videos to help everyone get to know each other better.
  • Assign tasks that involve teamwork, which can encourage the development of student relationships that keep students engaged and are essential for learning.
  • Remind students of the many resources that they have through Ecampus, such as the Student Success Team, which include student services, exam proctoring, and success counseling.

What have you experienced in your own courses? What has helped keep students engaged, and what have you done when you have noticed disengagement?

 

Resources on this topic: 

Engagement Matters: Student Perceptions on the Importance of Engagement Strategies in the Online Learning Environment (Martin & Bollinger, 2018)

Online Learning Consortium, Workshops

OSU Ecampus Student Success Team

The eLearning Dilemma: Engaged vs Unengaged Learners by Karla Guitierrez