Dog running through water with a stick
Image by Wolfgang Horvath from Pixabay.

My interest in learning about motivation in education began many years ago when I started learning about motivation in game design. In a way, while this blog post will follow a different format, it is an outgrowth of my previous post on how game design can influence course design. In order to better understand motivation, in a classroom, while playing a game, and in an online learning environment, I am turning to the body of research that has grown from Edward Deci and Richard Ryan’s Self-Determination Theory (SDT).

What is Self-Determination Theory?

Deci and Ryan’s theory stems from the larger investigation of human needs for well-being. While physiological needs like food, water, and shelter may be obvious, what are our psychological needs? SDT posits that the three basic psychological needs of humans are autonomy, competence, and relatedness. “Like physical needs, these needs are said to be objective phenomena in that their deprivation or satisfaction has clear and measurable functional effects, effects that obtain regardless of one’s subjective goals or values” (Deci & Ryan, 2017, p. 10). In addition to the basic needs, each is also associated with a dichotomy of social environments.

  • Autonomy: “the need to self-regulate one’s experiences and actions” (Ryan & Deci, 2017, p. 10). A feeling of autonomy is not simply being able to make choices, but feeling that your actions and behaviors are in alignment with your own values. Being able to independently make your own choices is certainly one way to feel volitional engagement, but not the only way to fulfill the need of autonomy. Social environments vary between autonomy supportive and demanding/controlling. When was the last time you were able to engage with a situation or action wholeheartedly and felt fulfilled?
  • Competence: “[the] need to feel effectance and mastery” (Ryan & Deci, 2017, p. 11). This need is often paired with receiving positive feedback, seeking and overcoming challenges, and following curiosities. This need has received the most research in motivation and psychological studies, especially in education research. Social environments vary between effectance supporting and overly challenging, inconsistent, or being otherwise discouraging. When was the last time you sought a challenge and positively progressed (or achieved) mastery?
  • Relatedness: “[the need to] feel socially connected” (Ryan & Deci, 2017, p. 11). Feeling relatedness isn’t just about feeling cared for or taken care of, it is also about feeling valued in a community and having a sense of belonging. Social environments vary between relationally supportive and impersonal/rejecting. When was the last time you felt a sense of belonging and valued in a community?

These needs are essential for optimal motivation, well-being, and vitality (Ryan & Deci, 2017, p. 11). The research on how SDT promotes more intrinsic motivation is significant, as well as helps empirically establish different types of motivation (autonomy-control, intrinsic-extrinsic, and internally regulated-externally regulated) (Ryan & Deci, 2017, pp. 14–15).

Designing and Teaching with SDT in Mind

If we want our learning spaces (no matter the modality: face-to-face, hybrid, online, etc.) to promote optimal student (and teacher!) motivation and overall well-being, how can we design these spaces to fulfill these three needs?

  • Autonomy: allow students to make meaningful decisions about their learning, which may include students pursuing objectives in an order of their choice, providing students with additional relevant applications and rationales for activities and materials, providing students with opportunities to roleplay or act through a scenario.
  • Competence: balance the challenge/difficulty of a given task with student ability/skill, set clear goals, scaffold materials or activities, have a system for transparently communicating student progress, provide positive feedback.
  • Relatedness: foster an inclusive learning environment, instill a value of learning, design activities and interactions for peers to share and collaborate their knowledge and experience, provide instructor-to-student interaction.

“In fact, classroom climates supporting autonomy, providing high structure [competence support], and conveying relatedness and inclusion foster personal well-being and feelings of connection to one’s school and community” (Ryan & Deci, 2017, p. 18). Many of these goals may already be met in your courses. However, there are actions and elements of design that can negatively impact need satisfaction as well. For example, overly difficult challenges, overwhelming negative feedback, and social comparisons can inhibit a sense of competence. The role of assessments and grading will need to be covered in a follow-up blog post, as these can have both negative and positive impacts depending on how they are implemented and designed.

In summary, striving to create a learning environment that fulfills all three needs of SDT can be positive and rewarding for everyone in the class, including the instructor. While this is only a brief introduction to Self-Determination Theory as a whole, I hope it has inspired you to consider how your courses can be designed with SDT in mind.

References and Resources

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry 11(4), 227–268.

Ryan, R. M., & Deci, E. L. (2017). Self-Determination Theory: Basic psychological needs in motivation, development, and wellness. New York: Guilford Press.

Ryan, R. M. & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67.

Self-Determination Theory. (2019).

  • This website is a treasure-trove of resources on SDT and its application in numerous fields, including education.

What’s An Image’s Value?

Image of postcard with a picture is worth a thousand words written on it.

Have you ever created an online course without using images? No?

That is not surprising as images can convey emotions, ideas, and much more. Their value is often captured in an old adage: A picture is worth a thousand words.

This article will discuss the value of images in online course design and how using visuals to accompany instruction via text or narration might contribute to or detract from an online learning experience. Let’s begin.

Multimedia Learning: Images, Text, and More

Online learning is a modern form of multimedia learning. Richard Mayer (2009) described multimedia learning as that learning that integrates the use of words and pictures. In traditional classrooms these learning resources might be experienced as: 

  • Textbooks:  Text and illustrations.
  • Computer-based lessons: Narration w/animation
  • Face-to-face slide presentations: Graphics and audio.

In online learning multimedia may also include:

  • eBooks: Text and digital images 
  • Video: Text, images, animations, coupled with audio.
  • Interactives: Maps, images, and video.
  • Digital Visual Representations: Virtual worlds and 3D models.
  • Screencasts: Software demos, faculty video feedback, and more.
  • Audio: Enhanced podcasts or narrated lectures.

These two short lists, although not exhaustive, demonstrates the importance of visual elements to multimedia based learning in online courses. There are many reasons why we might include any one of these multimedia learning experiences in an online course. For our purposes we will explore a bit more the instructional value of visuals to online learning.

So, how do words and pictures work together to help shape learning? Given that this is perhaps the most common learning object used in an online course it would seem useful to understand what may be considered this simple interpretation of visual literacy for learning (Aisami, 2015).

Visual Engagement Of A Learning Object

In a recent study of how people acquire knowledge from an instructional web page Ludvik Eger (2018) used eye tracking technology to examine a simple learning object composed of a title (headline), a visual element (i.e., diagram), and a box of written text. With no audio support for the learning object in this study, participants engaged the content via visual engagement alone. Results indicated that the majority of students started their learning process at the headline or the headline and visual element. The box of information, in text form, was the third part of the learning object engaged.

Within this context eye movement analysis indicates a learning process that is dependent upon a consistent visual flow. Purposely connecting the title, visual element and information text of a learning object may best reinforce learning. By doing this the course designer/instructor becomes a sort of cognitive guide either focusing or not-focusing learning via the meaning structure of the various learning object elements. In our case we want to use visual elements to support performance and achievement of learning tasks.

Choosing Visual Elements

In order to explore the choice of visual elements in an online learning experience it is helpful to understand how we process that experience from a cognitive science perspective.

Clark and Mayer (2016) describe that cognitive science suggests knowledge construction is based upon three principles: Dual channels, limited capacity and active processing. Let’s briefly examine what these are.

Dual channels:

People have two channesl of cognitive processing 1) for processing visual/pictorial material and 2) one for auditory/verbal material. See Figure 1.  below.

 

Model of cognitive model of multimedia learning.
Figure 1.: Model of the Cognitive Theory of Multimedia Learning

Limited capacity:

Humans can only process a few bits of pieces of information in each channel at the same time.

Active processing:

Learning occurs as people engage in cognitive processing during learning. This may include attending to relevant material, organizing that material into a coherent structure, and integrating that material with prior knowledge.

Due to the limits on any learner’s processing capability it is paramount that we select visual images that help manage the learning process. Our goal is to limit excessive processing that clutters the learning experience, build visual support for representing the core learning process, and provide visual support that fosters deeper understanding of the learning at hand. What does this mean in practice?

Managing Processing Via Image Use

Making decisions about image selection and use is a key to managing this learning process. Understanding the meaning of images to select is also key and is really a function of literacy in one’s field and visual literacy in general (Kennedy, 2013).

In practice we can use the following guidelines to make decisions about image use in multimedia-based online learning. 

  • Control Visual Elements – Too many images on a web page or slide may force extraneous cognitive processing that does not support the instructional objective. 
  • Select Visual Elements Carefully – Images difficult to discern are likely to negatively impact learning. Think about good visual quality, emotional and intellectual message of the image, information value, and readability.
  • Use Focused Visual Elements – Target selection of visual support to those images that represent the core learning material and/or provide access to deeper understanding of that core content.

Other Image Tips

Emotional Tone: Emotional design elements (e.g., visuals) can play important roles in motivating learners and achievement of learning outcomes (Mayer, 2013).

Interest: Decorative images may boost learner interest but do not contribute to higher performance in testing (Mayer, 2013). Use decorative images prudently so they do not contribute to extraneous learning processing (Pettersson & Avgerinou, 2016).

Challenge: Making image selections that contribute to a degree of confusion may challenge learnings to dive more deeply into core learning. This is a tenuous decision in that challenge in sense making may prove to foster excessive processing.

Access: Images must be presented in a format that is viewable to users to be practical. This involves an understanding of technical features of image formats, download capability, mobile use, and universal design techniques.

Final Thoughts

It is valuable to remember that visuals communicate non verbally. They are most effectively used when carefully selected and paired with text or audio narration. Visuals appeal to the sense of sight. They have different classifications and could be pictures, symbols, signs, maps graphs, diagrams, charts, models, and photographs. Knowing their form, meaning, and application is part of being a visually literate course developer or instructional designer.

Web Resources

References

Aisami, R. S. (2015). Learning Styles and Visual Literacy for Learning and Performance. Procedia – Social and Behavioral Sciences, 176, 538-545. doi:10.1016/j.sbspro.2015.01.508

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction : Proven guidelines for consumers and designers of multimedia learning. Retrieved from http://ebookcentral.proquest.com

Eger, L. (2018). How people acquire knowledge from a web page: An eye tracking study. Knowledge Management & E-Learning: An International Journal 10(3), 350-366.

Kennedy, B. (2013, November 19). What is visual literacy?. [Video file]. Retrieved from https://www.youtube.com/watch?time_continue=1&v=O39niAzuapc

Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and Instruction, 29, 171-173. doi:10.1016/j.learninstruc.2013.04.003

Rune Pettersson & Maria D. Avgerinou (2016) Information design with teaching and learning in mind, Journal of Visual Literacy, 35:4, 253-267, DOI: 10.1080/1051144X.2016.1278341

 

Credit: Embedded image by Kelly Sikkema on Unsplash.com

I pledge that I have acted honorably in completing this assessment.

There are two sides to the story of security of online assessments. On the one side, cheating does exist in online assessments. Examity’s president Michael London summarized five common ways students cheat on online exams:

  1. The old-school try of notes;
  2. The screenshot;
  3. The water break;
  4. The cover-up; and
  5. The big listen through devices such as Bluetooth headset (London, 2017).

Newton (2015) even reported the disturbing fact that “cheating in online classes is now big business”. On the other side, academic dishonesty is a problem of long history, both on college campuses and in online courses. The rate of students who admit to cheating at least once in their college careers has held steady at somewhere around 75 percent since the first major survey on cheating in higher education in 1963 (Lang, 2013). Around 2000, Many faculty and students believed it was easier to cheat in online classes (Kennedy, 2000), and about a third of academic leaders perceived online outcomes to be inferior to traditional classes (Allen & Seaman, 2011). However, according to Watson and Sottile (2010) and other comparative studies (Pilgrim & Scanlon, 2018), there is no conclusive evidence that online students are more likely to cheat than face-to-face students. “Online learning is, itself, not necessarily a contributing factor to an increase in academic misconduct (Pilgrim & Scanlon, 2018)”.

Since there are so many ways for students to cheat in online assessments, how can we make online assessments more effective in evaluating students’ learning? Online proctoring is a solution that is easy for instructors but adds a burden of cost to students. Common online proctoring service providers include ProctorU, Examity, Proctorio, Honorlock, to name just a few (Bentley, 2017).

Fortunately, there are other ways to assess online learning without overly concerned with academic dishonesty. Vicky Phillips (n.d.) suggested that authentic assessment makes it extremely difficult to fake or copy one’s homework. The University of Maryland University College has consciously moving away from proctored exams and use scenario-based projects as assessments instead (Lieberman, 2018). James Lang (2013) suggested smaller class sizes will allow instructor to have more instructor-to-students interaction one-on-one and limit cheating to the minimum therefore; Pilgrim and Scanlon (2018) suggest changing assessments to reduce the likelihood of cheating (such as demonstrating problem solving in person or via video, using plagiarism detection software programs like TurnItIn, etc.) , promote and establish a culture of academic integrity (such as honor’s code, integrity pledge), and supporting academic integrity through appropriate policies and processes. Kohnheim-Kalkstein (2006) reports that the use of a classroom honor code has been shown to reduce cheating. Kohnheim-Kalkstein, Stellmack, and Shilkey (2008) report that use of classroom honor code improves rapport between faculty and students, and increases feelings of trust and respect among students. Gurung, Wilhelm and Fitz (2012) suggest that an honor pledge should include formal language, state the specific consequences for cheating, and require a signature. For the honor pledge to be most effective, Shu, Mazar, Gino, Ariely, and Bazerman (2012) suggests including the honor pledge on the first page of an online assessment or online assignment, before students take the assessment or work on the assignment.

Rochester Institute of Technology (2014) ’s Teaching Elements: Assessing Online Students offer a variety of ways to assess students, including discussions, low-stake quizzes, writing assignments (such as muddiest point paper), and individual activities (such as staged assignments for students to receive ongoing feedback), and many other activities.

In summary, there are plenty of ways to design effective formative or summative assessments online that encourage academic honesty, if instructors and course designers are willing to spend the time to try out suggested strategies from literature.

References

Bentley, Kevin. (2017). What to consider when selecting an online exam proctoring service. Inside HigherEd. (June 21, 2017). Retrieved from https://www.insidehighered.com/digital-learning/views/2017/06/21/selecting-online-exam-proctoring-service on February 22, 2019.

Gurung, R. A. R., Wilhelm, T. M., & Filz, T. (2012). Optimizing honor codes for online exam administration. Ethics & Behavior, 22, 158–162.

Konheim-Kalkstein, Y. L. (2006). Use of a classroom honor code in higher education. Journal of Credibility Assessment and Witness Psychology, 7, 169–179.

Konheim-Kalkstein,Y. L., Stellmack, M. A., & Shilkey, M. L. (2008). Comparison of honor code and non-honor code classrooms at a non-honor code university. Journal of College & Character, 9, 1–13.

J.M. Lang. (2013). How college classes encourage cheating. Boston Globe. Retrieved from https://www.bostonglobe.com/ideas/2013/08/03/how-college-classes-encourage-cheating/3Q34x5ysYcplWNA3yO2eLK/story.html on February 21, 2019.

Lieberman, Mark. (2018). Exam proctoring for online students hasn’t yet transformed. Inside Higher Ed (October 10, 2018). Retrieved from https://www.insidehighered.com/digital-learning/article/2018/10/10/online-students-experience-wide-range-proctoring-situations-tech, on February 22, 2019.

Michael London. (2017). 5 Ways to Cheat on Online Exams. Inside Higher Ed (09/20/2017). Retrieved from https://www.insidehighered.com/digital-learning/views/2017/09/20/creative-ways-students-try-cheat-online-exams on February 21, 2019.

Derek Newton. (2015). Cheating in Online Classes is now big business. The Atlantic. Retrieved from https://www.theatlantic.com/education/archive/2015/11/cheating-through-online-courses/413770/ on February 21, 2019.

Vicky Phillips. (n.d.). Big Fat Online Education Myths – students cheat like weasels in Online Classes. GetEducated. Retrieved from https://www.geteducated.com/elearning-education-blog/big-fat-online-education-myths-students-cheat-like-weasels-in-online-classes/ on February 21, 2019.

Chris Pilgrim and Christopher Scanlon. (2018). Don’t assume online students are more likely to cheat. The evidence is murky. Retrieved from https://phys.org/news/2018-07-dont-assume-online-students-evidence.html on February 21, 2019.

Rochester Institute of Technology. (2014). Teaching Elements: Assessing Online Students. Retrieved from https://www.rit.edu/academicaffairs/tls/sites/rit.edu.academicaffairs.tls/files/docs/TE_Online%20Assessmt.pdf on February 21, 2019.

Shu, L. L., Mazar, N., Gino, F., Ariely, D., & Bazerman, M. H. (2012). Signing at the beginning makes ethics salient and decreases dishonest self-reports in comparison to signing at the end. PNAS, 109, 15197–15200.

George Watson. And James Sottile. (2010). Cheating in digital age: Do students cheat more in online courses? Online Journal of Distance Learning Administration 13(1). Retrieved from https://www.westga.edu/~distance/ojdla/spring131/watson131.html on February 21, 2019

First, let’s start by considering the characteristics of effective feedback in general. What comes to mind?

sound waves

Perhaps you hear in your head (in the authentically authoritative voice of a past professor) the words timely, frequent, regular, balanced, specific. Perhaps you recall the feedback sandwich–corrective feedback sandwiched between positive feedback. Perhaps you consider rubrics or ample formative feedback to be critical components of effective feedback. You wouldn’t be wrong.

As educators, we understand the main characteristics of effective feedback. But despite this fact, students are often disappointed by the feedback they receive and faculty find the feedback process time consuming, often wondering if the time commitment is worth it. As an instructional designer, I hear from faculty who struggle to get students to pay attention to feedback and make appropriate changes based on feedback. I hear from faculty who struggle to find the time to provide quality feedback, especially in large classes. The struggle is real. I know this because I hear about it all the time.

I’m glad I hear about these concerns. I always want faculty to share their thoughts about what’s working and what’s not working in their classes. About a year or two ago, I also started hearing rave reviews from faculty who decided to try audio feedback in their online courses. They loved it and reported that their students loved it. Naturally, I wanted to know if these reports were outliers or if there’s evidence supporting audio feedback as an effective pedagogical practice.

I started by looking for research on how audio feedback influences student performance, but what I found was research on how students and faculty perceive and experience audio feedback.

What I learned was that, overall, students tend to prefer audio feedback. Faculty perceptions, however, are mixed, especially in terms of the potential for audio feedback to save them time.

While the research was limited and the studies often had contradictory results, there was one consistent takeaway from multiple studies: audio feedback supports social presence, student-faculty connections, and engagement.

While research supports the value of social presence online, audio feedback is not always considered for this purpose. Yet, audio feedback is an excellent opportunity to focus on teaching presence by connecting one-to-one with students.

If you haven’t tried audio feedback in your classes, and you want to, here are some tips to get you started:

  1. Use the Canvas audio tool in Speedgrader. See the “add media comment” section of the Canvas guide to leaving feedback comments. Since this tool is integrated with Canvas, you won’t have to worry about upload and download times for you or your students.
  2. Start slow. You don’t have to jump into the deep end and provide audio comments on all of your students’ assignments. Choose one or two to get started.
  3. Ask your students what they think. Any time you try something new, it’s a good idea to hear from your students. Creating a short survey in your course to solicit student feedback is an excellent way to get informal feedback.
  4. Be flexible. If you have a student with a hearing impairment or another barrier that makes audio feedback a less than optimal option for them, be prepared to provide them with written feedback or another alternative.

Are you ready to try something new? Have you tried using audio feedback in your course? Tell us how it went!

References:

Image by mtmmonline on Pixabay.

Note: This post was based on a presentation given at the STAR Symposium in February 2019. For more information and a full list of references, see the presentation slide deck.

 

What is it?

Image of animator’s face in Character Animator program showing the facial data points used for animation creation.

Facial motion capture (Mo-Cap) is a process that uses a camera to map and track points on the user’s face. Software such as Adobe’sCharacter Animator derive data from the camera to animate cartoon characters in real time. This can greatly reduce the amount of time needed to create an animation and breathes subtle life into the character that would be otherwise difficult to achieve. Character Animator harnesses the power of the webcam to map several parts of the face to the respective parts of the character allowing it to record in real time. This includes your eyebrows, eyes, mouth, and head position. It also intakes audio to change mouth shapes to match what the user is speaking. In addition to the webcam, the user can operate their keyboard to trigger additional movements, effects, and walk motions. All these different aspects combine and give the character a personalized feel.

How does it help?

Image of character being rigged into a puppet showing the mesh and body tags.

Cartoon animations currently do not have a large presence in online learning. This is mostly because they take a long time to create and not everyone has had the resources to create them. Normally, character animation for cartoons requires drawing each frame or using a pose-to-pose process called key framing. With innovative technology such as Character Animator, it greatly reduces the barrier to create cartoon animations for online learning. Each motion of the face records instantly and gives the character life by adding subtle movements to the face and head. The bulk of the work is completed early on to draw, rig, and add triggers to the character, or in this case, the puppet. Once the puppet is set up to record, it is smooth sailing from there. All movements, audio, and facial expressions are recorded in one take; greatly reducing the amount of time for development. However, Character Animator allows you to choose which aspects you want to record, so you can record the eye movements one time, then the eyebrows another time. This is helpful for the perfectionists out there who cannot seem capture it all at once.

How does it work?

To create an animation using Character Animator, there are a handful of stages to complete. The first step is to draw the character in either Photoshop or Illustrator. Next, Character Animator imports the graphics and they are rigged into puppets to prepare for recording. This means the eyes, nose, mouth, etc. are tagged with their respective labels. Also during this time, you can create keyboard triggers. These are animations such as arm movements, walk motions, and more, that the pressing of certain keys on the keyboard triggers the character to perform. After the puppets are prepared, it is time to record. It does not have to be shot perfectly all at once; you can blend the best bits from different recordings into one masterpiece. The last step is to export the character’s recording and composite it into a story using video software such as Premiere Pro or After Effects. Once you achieve the flow of facial Mo-Cap, you can start cranking out animations faster than ever before.

Click Image to View Video

Below is a quick rundown of what it takes to set up a character and how to record it. At the end of the video, there is a sample of multiple characters in one scene.

What does the process look like?

 

Author: Zach Van Stone, Oregon State University Ecampus

OSU Portland CenterOregon State University now has over 500 hybrid (“blended”) courses including the Ecampus hybrid degree and certificate programs offered through the new Portland Center.

What do OSU faculty say about blended learning? Since 2012, participants in the Hybrid Faculty Learning Community have been blogging about their approaches to blended course design and teaching. The resulting 200+ posts in the Hybrid Faculty Blog are a rich compendium of reflections on hybrid teaching and learning.

As they design hybrid courses, faculty from across OSU describe how they come to terms with a course format that has great potential to successfully engage today’s students, but that can be challenging to do well, especially the first time. Instructors celebrate the possibilities of a course mode that combines “the best of both worlds” of online and face-to-face teaching and learning. Here are selections from their writing about integration of online and face-to-face learning, flipped teaching and student-to-student interaction.

Integration of Online and Face-to-Face Learning Activities

Our face-to-face meetings will be used to integrate all that they have been learning online and will use open-ended questions to engage students in discussions intended to broaden and deepen their thinking about the module’s content. – Ted Paterson, Business

The key method we are using to link the online material and the classroom time is the weekly case study.  Each case study will be tied to the learning objectives for that week, which in turn are mapped to course-level learning objectives…. This case study approach will both illustrate and reinforce the course concepts while also giving the students an opportunity to explore additional concepts. – Sue Carozza, Public Health

Flipped Teaching and Learning

Moving to a flipped approach provides an opportunity to really consider what types of learning materials and strategies deeply engage students in knowledge generation, while taking advantage of the expanding capabilities of electronic media. – John Bolte, Biological and Ecological Engineering (BEE)

Students using technology in blended classroomOnline and classroom experiences will be linked in a variety of ways. Specifically, the online activities will help students prepare for class by completing readings, video lectures, and quizzes prior to class meetings. Class time can then be used to focus on difficult concepts and to expand on current issues in nutrition. – Jennifer Jackson, Nutrition

The goal for the online content is that students arrive in class with a similar level of knowledge after reviewing and being quizzed on background materials. In-class content will then emphasize materials that are likely new to all students, emphasizing engineering design, example calculations, and content…. In this model, the online content will provide the theoretical foundation for diving deeper with in-class content on design. – Desiree Tullos, BEE

Student-to-Student Interaction

Integrating real-time discussion in class has been very fruitful in my hybrid course. I use a Just-In-Time approach where the students are asked a question prior to class, where they participate by posting in a discussion board and replying to each other. The discussion board closes a few minutes after the start of class. If there are points to discuss, I open a new discussion board and the students interact online for four minutes or so. I find that they have gotten to know each other very well in a short time by integrating their online presence with in-class discussions. In general, they are more open to verbally discussing material than previous classes I have taught. – Kathy Hadley, Astronomy

Students working together in blended classOne of the great things that online courses provide is the opportunity to have more transparency throughout a project compared to a non-hybrid class, because the digital material is available all the time and the entire class can have access. In a typical non-hybrid course … the students rarely see the daily or weekly progress and process of how other teams are working. Allowing teams to see one another’s process, progress and being allowed to contribute to other team’s process and progress may create a richer and more transparent experience for students. My hope is that innovative online team experiences will expand students’ collaborative toolkit, [and] help them gain confidence in peer learning. – Andrea Marks, Design

Understanding and fostering students learning from one another is a method of also avoiding the “sage on the stage” problem…. In our field it is important for each future public health professional to internalize that they will need to learn from the communities they will be working in. I believe one way to foster that is to make certain that students are learning from their peers and that we are continually learning from them as well. – Karen Volmar, Public Health

Want to find out more about hybrid teaching and learning? Check out the resources on the OSU Hybrid Learning webpage and review the effective hybrid teaching practices that OSU hybrid faculty have identified. Thinking of designing a hybrid course? Talk to an Ecampus instructional designer and learn how to use a blended learning mix map.

game controller on work desk

What can instructional designers learn from video game design? This might seem like a silly question—what do video games have to do with learning? Why might we use video games as an inspiration in pedagogy? As instructional designers, faculty often come to us with a variety of problems to address in their course designs—a lack of student interaction, how to improve student application of a given topic, and many more. While there are many tools at our disposal, I’d like to propose an extra tool belt for our kit: what if we thought more like game designers?

Video games excel at creating engaging and motivating learning environments. Hold on a minute, I hear you saying, video games don’t teach anything! In order for games to onboard players, games teach players how to navigate the “physical” game world, use the game’s controls, identify the rules of what is and is not allowed, interpret the feedback the game communicates about those rules, identify the current outcome, form and execute strategies, and a large variety of other things depending on the game, and that’s usually just the tutorial level!

What is the experience like in a learning environment when students begin an online course? They learn how to navigate the course site, use the tools necessary for the course, identify the assessment directions and feedback, identify the short-term and long-term course outcomes, learn material at a variety of different learning levels, and large variety of other things depending on the class, and that’s usually just the first week or two! Sound familiar? What are some things that video games do well during this on-boarding/tutorial to setup players for success? And how might instructional designers and faculty use these elements as inspiration in their classes?

The following list includes nine tips on how game design tackles tutorial levels and how these designs could be implemented in a course design:

  1. Early tasks are very simple, have low stakes, and feedback for these tasks is often very limited—either “you got it” or “try again”. Consider having some low-stakes assignments early in the course that are pass/fail.
  2. If negative feedback is received (dying, losing a life, failing a level, etc.), it is often accompanied by a hint, never an answer. If you have a MCQ, do not allow students to see the correct answer, but consider adding comments to appear if a student selects an incorrect answer that offers hints.
  3. If negative feedback is received, the game does not move on until the current outcome is achieved. Allow multiple attempts on quizzes or assignments and/or setup prerequisite activities or modules.
  4. Game levels allow for flexible time—different players complete levels at different rates. Design tasks with flexible due dates. Many courses already allow some flexibility for students to complete activities and assessments within weekly modules—can that flexibility be extended beyond a weekly time frame?
  5. Tutorial quests usually have predetermined and clearly communicated outcomes. All objectives are observable by both the game and the player. Create outcomes and rubric conditions/language that are self-assessable, even if the instructor will complete the grading.
  6. Tasks and game levels are usually cumulative in nature and progress using scaffolded levels/activities. Consider breaking up large assignments or activities into smaller, more cumulative parts.
    • For example, the first quest in The Elder Scrolls V: Skyrim is a great example for Nos. 5 and 6 above. It consists of four required objectives and two optional objectives:
      • Make your way to the keep.
      • Enter the Keep with Hadvar or Ralof.
      • Escape Helgen.
      • Find some equipment (Hadvar) / Loot Gunjar’s body (Ralof).
        • Optional: Search a barrel for potions.
        • Optional: Pick the lock of a cage.
  7. There are varying degrees of assumed prior knowledge, but no matter what, everyone participates in the tutorial levels. They are not optional. Consider saving optional “side quests” for later in a course or having an introductory module for everyone, regardless of skill level.
  8. The “tutorial” process usually ends when all skills have been introduced, but some games continue to add new skills throughout, inserting mid-game tutorials when necessary. Return to some of the design ideas on this list if a course introduces new topics throughout.
  9. After a requisite number of skills are mastered and players are able to fully play the game, the only major changes in design are increases in difficulty. These changes in difficulty are usually inline with maintaining a flow state by balancing the amount of challenge to the skill level of the player. As course material and activities increase in difficulty, make sure there are ample opportunities for students to develop their abilities in tandem.

Games are a great model for designing engaging learning experiences, with significant research in psychology and education to back it up. By understanding how games are designed, we can apply this knowledge in our course designs to help make our courses more motivating and engaging for our students.

Additional Resources

Want to know more about the psychology of why these designs work? Start with these resources:

Active Learning: What Does the Research Show?

We often hear about new approaches in teaching, and some can take on near-mythical status. That might be the case for active learning. It’s been widely touted as the “most effective” pedagogical approach, but unless you have time to dig through the research, it may not be easy to determine if this trend is applicable – or beneficial – to your teaching and discipline.

So what does the research say about active learning? This article provides a brief summary of research results for active learning applied in STEM subjects.

Why Use Active Learning?

Before we discuss why active learning is beneficial, let’s clarify exactly what active learning is. As opposed to passive learning, such as listening to a traditional lecture, active learning requires students to do something and think about what they are doing (Bonwell & Eison, 1991).

Much research supports the power and benefits of active learning. Students have better retention and understanding when they are actively involved in the learning process (Chickering & Gamson, 1987). Active engagement promotes higher order thinking, since it often requires students to evaluate, synthesize, and analyze information. Research indicates that students develop strong connections, apply concepts to authentic scenarios, and dive deeply into the content, often discovering an unexpected level of engagement that is exciting and stimulating (Nelson, 2002).

Does Active Learning Produce Better Outcomes in STEM?

Research indicates the answer is “yes!” In an introductory physics course, Harvard professor Eric Mazur (2009) found that his students were not able to answer fundamental physics scenarios or grasp basic concepts from traditional lectures. As a result, he stopped lecturing and has become an outspoken champion for active learning.

An organic chemistry class adopted active learning, resulting in significantly higher grades for students in the active classroom than in the control group, with the greatest effect coming from low-achieving students (Cormier and Voisard, 2018). In an introductory undergraduate physics course, two large student groups were compared. The active learning section showed greater attendance, more engagement, and more than double the achievement on an exam (Deslauriers, Schelew and Weiman, 2011).

In 2004, a skeptical Michael Prince (2004) researched the then-current literature on active learning to determine whether it offered consideration for engineering. He found that many active learning recommendations directly conflicted with historical engineering teaching practices. Methods like breaking lectures into small, topic-specific segments, interspersing lecture with discussion, using problem-based scenarios, or grouping students for collaborative learning were uncommon. Ultimately, Prince reluctantly concluded that the bulk of research evidence indicated that these types of teaching methods might foster better retention and enhance critical thinking.

What About Non-STEM Classes?

Although these findings are from research in STEM disciplines, active learning contributes to better grades, more engagement, increased student satisfaction and better retention in any topic (Allen-Ramdial & Campbell, 2014). Active learning tends to increase involvement for all students, not just those already motivated to learn. Peer-to-peer collaboration helps students solve problems and better understand more complex content (Vaughan et al., 2014). Research indicates that students learn more when they actively participate in their education and are asked to think about and apply their learning (Chickering & Gamson, 1987).

Try It Yourself!

The articles cited in this post offer a number of easy-to-implement active learning suggestions that are effective in ether a face-to-face or online classroom. Give one or two a try and see if your students are more engaged in the learning  process.

  • Offer opportunities for students to practice and examine concepts with peers, such as through debates.
  • Break lectures into small, granular topics and intersperse with questions or problem-solving activities based on real-world applications. Video technologies can easily accommodate this approach for online learning.
  • Structure quizzes or other activities to give immediate feedback. Answer keys and auto-graded assessments are available as a feature in virtually any learning management system.
  • Consider “flipping” the classroom by asking students to read or watch lecture videos before in-person class sessions.
  • Design activities that encourage students to work in small groups or collaborate with others.
  • Add a personal reflection component to help students uncover new ideas or insights.

Although no single definitive study has yet been published to unequivocally prove the efficacy of active learning, the body of evidence from many studies forms a compelling argument that it is does offer significant benefits (Weimer, 2012). Give it a try and see how active learning works in your discipline.

Susan Fein, Ecampus Instructional Designer | susan.fein@oregonstate.edu

References

  • Allen-Ramdial, S.-A. A., & Campbell, A. G. (2014, July). Reimagining the Pipeline: Advancing STEM Diversity, Persistence, and Success. BioScience, 64(7), 612-618.
  • Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.
  • Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.
  • Cormier, C., & Voisard, B. (2018, January). Flipped Classroom in Organic Chemistry Has Significant Effect on Students’ Grades. Frontiers in ICT, 4, 30. doi:https://doi.org/10.3389/fict.2017.00030
  • Deslauriers, L., Schelew, E., & Wieman, C. (2011, May). Improved Learning in a Large-Enrollment Physics Class. Science, 332, 862-864.
  • Mazur, E. (2009, January 2). Farewell, Lecture? Science, 323(5910), 50-51. Retrieved from http://www.jstor.org/stable/20177113
  • Nelson, G. D. (2002). Science for All Americans. New Directions for Higher Education, 119(Fall), 29-32.
  • Prince, M. (2004, July). Does Active Learning Work? A Review of the Research. Journal of Engineering Education, 223-231.
  • Vaughan, N., LeBlanc, A., Zimmer, J., Naested, I., Nickel, J., Sikora, S., . . . O’Connor, K. (2014). To Be or Not To Be. In A. G. Picciano, C. D. Dziuban, & C. R. Graham (Eds.), Blended Learning Research Perspectives (Vol. 2, pp. 127-144). Routledge.
  • Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Photo Credits

Auditorium – Photo by Mikael Kristenson on Unsplash
Engagement – Photo by Priscilla Du Preez on Unsplash
Hands – Photo by Headway on Unsplash
Library – Photo by Susan Yin on Unsplash
Contemplation – Photo by sean Kong on Unsplash

Image of mountaineers with quote by John Dewey.

What is Experiential Learning?

You may have heard the terms experiential education and experiential learning. Both terms identify learning through experience as a foundational understanding. However, experiential learning is associated with individual learning.

Traditionally experience-based learning in higher education has been presented as educational opportunities complimentary to classroom instruction. These experiences might include clinical experiences, cooperative education experiences, apprenticeships, fellowships, field work, volunteerism, study abroad, practicum and internships, service learning, and student teaching experiences. These types of learning experiences are offered in and across many different disciplines (Giesen, 2012). These familiar experiential education programs demonstrate the value of individual experiential learning. But, the question remains: Is experiential learning a viable approach for online instruction?

Understanding the potential for experiential learning for online courses turns upon recognizing experiential learning as a process. The experiential learning process has been described as a cycle of learning (Kolb and Kolb, 2018). The model below illustrates The Experiential Learning Cycle.

Model of experiential learning showing sequence of Concrete Experience, Reflective Observation, Abstract Conceptualization, and Active Experimentation.

Experiential learning is understood as constructive pedagogy approach that is highly student centered. The Experience Learning Cycle begins with a concrete experience of some kind. Commonly we think of this as a real world event. That experience is followed by reflective observation of the experience, abstract conceptualization of what was learned, and the application of new learning via active experimentation. That experimentation is integrated as part of the next concrete experience.

The interactive and progressive nature of the experiential learning cycle is considered a driver of personal growth and development. The dialectics between concrete experience and abstract conceptualization as well as reflective observation and active experimentation are theorized to drive motivation for learning. 

Online Experiential Learning In Practice 

Problem-based learning, case-based learning, and  project-based learning are examples of design models that may include learning via experience in the real world (Bates, 2014). These models are often used as a way of bringing engagement into online instruction. So, if you have been incorporating these models of learning in an online course you are engaged at some level with experiential learning. But, what if you wanted to design an experiential learning assignment that does not fall within one of these models?  What might that look like?

Let’s examine the application of the experiential learning cycle to an online learning experience in a course recently offered through Ecampus at Oregon State University. The asynchronous course, Introduction to Organic Agriculture Systems, is a survey style course with an enrollment of students from Oregon and more distant.

Let’s step through The Cycle of Experiential Learning with an assignment from this course as our sample context. Hopefully it will reveal some insights into both the process of experiential learning and its practice.

1. Concrete Experience

The concrete experience for this course was an organic scavenger hunt assignment that was to be completed in the first week of the course. Although the overt activity of was a guided scavenger hunt the learning experience focus was to begin to learn systems thinking in organic agriculture. This is important to identify, as it is the authentic learning goal of the experiential learning.

As the professor framed this assignment: “This introductory activity will provide you the opportunity to explore organic availability, marketing, and farming in your community.”This concrete experience is the direct experience of organics in the student’s community.

The objectives of the scavenger hunt were to:

  • Identify organic products and marketing techniques that differentiate organic from conventional products
  • Conduct a survey of organic availability in your local store and region
  • Participate in hands-on exploration of different components of the organic system

Students were provided with a detail scavenger hunt instruction set and told to complete there first part of the assignment in a local store using an organic scavenger hunt questionnaire-work sheet. Time estimates for completion of the scavenger hunt was up to three hours at the store site. Completed work sheets were turned in to the instructor.

The key to this assignment is the real life exploration of the local organic system. Although this will be elaborated on in subsequent weeks of the course, this concrete experience will become a touchstone students can reference as they build new knowledge and skills in systems thinking in organic agriculture.

2. Reflective Observation

Part 2 of the scavenger hunt assignment includes independent student work guided by questions that ask about the presence of organic farms in the student’s area, type of organic farms, scale of the farms and evidence of their independent research work.

This element of the assignment encourages students to search for, identify, and reflect upon gaps in the local organic system in their own backyard. This work encourages students to reflect upon their own concrete experience, the quality of their work, and its linkage to understanding systems thinking.

3. Abstract Conceptualization

In week three of the course students were assigned a course discussion to share their findings from the scavenger hunt with peers. Here they compare and contrast their scavenger hunt findings and observations. In particular, students were asked to connect the social, environmental and economic dimensions of sustainability in organic agriculture to their observations taken from the scavenger hunt experience. Additionally students were asked to review other student work from different locals and explore common understandings about organic agriculture systems.

The value of this exercise from an experiential learning perspective is the application of concrete experience to more abstract concepts described by others or found in other agricultural regions. This provides opportunities for the re-conceptualizing of prior experiences with the goal of expanding on the process of organic agriculture systems thinking.

4. Active Experimentation

The Cycle of Experiential Learning rounds out with planning and applying new learning about organic agriculture systems thinking to a future concrete experience. Abstract conceptualization completed in the previous discussion will contribute to the formulation of new questions and ways of examining a local organic agriculture system. Students will likely apply these ideas to ongoing organic agriculture systems thinking in the course. In this way prior reflective observation becomes the root of new questions and predicted results for the next learning experience in organic agriculture systems thinking.
 

Final Thoughts

The final project of this course is the production of an organic systems map that explains the relationships between organic system stages (i.e., production, processing, distribution/marketing, consumption, and waste) and the dimensions of sustainability (ie. social, environmental, and economic).

In order to complete the final project students learn a great deal between their initial scavenger hunt and the final project. Their original concrete experience in systems thinking will likely inform decisions about how to re-apply new organic agriculture systems thinking.

The experiential learning assignment we just examined only works if students perceive that moving through the cycle of experiential learning addresses an authentic learning need. As the course is focused on introducing organic agriculture systems the idea of learning systems thinking makes sense. It captures the fundamental truth of what is expected to be learned (Jacobson, 2017) making the learning appropriate.

What Now?

As you explore the possibility of using experiential learning in your online course it is valuable for you to first consider formulating answers to a number of questions.

  • What is the authentic learning needed?
  • What concrete experience provides students with access to that learning? 
  • How will students carry that concrete experience through the cycle of experiential learning?
  • How will you provide the opportunity for concrete experiences for remote learners in a way that fosters individual learning and contributes to large scale learning in the course?

As you explore experiential learning for your online course revisit the model shared in this article. For help in this process contact your Ecampus instructional designer. They can help focus the key questions and suggest instructional strategies and tools to help you achieve your online experiential learning goals.

 

References

Bates, T. (2014). Can you do experiential learning online? Assessing design models for experiential learning. Retrieved from https://www.tonybates.ca/2014/12/01/can-you-do-experiential-learning-online-assessing-design-models-for-experiential-learning/

Dewey, J. (1938). Experience and Education. New York: Simon and Schuster.

Giesen, J. (2012). Experiential Learning. Faculty Development and Instructional Design Center, Northern Illinois University. Retrieved from https://www.niu.edu/facdev/_pdf/guide/strategies/experiential_learning.pdf

Jacobson, J. (2017). Authenticity in Immersive Design for Education. In Virtual, Augmented, and Mixed Realities (Ch 3). Singapore, Springer Nature.
Retrieved from https://link.springer.com/book/10.1007%2F978-981-10-5490-7

Kolb, A. & Kolb, D. (2018). Eight important things to know about The Experience Learning Cycle. Australian Educational Leader, 40 (3), 8-14.


Experiential Education Resources

Association for Experiential Education
http://www.aee.org/ 

Journal of Experiential Education
http://www.aee.org/publications/jee 

Experience Based Learning Systems Inc.
https://learningfromexperience.com

Experiential Learning & Experiential Education
http://www.wilderdom.com/experiential/

Decorative image: laptop with a screen that shows a portfolio layout

“A well-executed e-portfolio program is an incredible tool for higher education. They provide institutions with authentic assessments of student learning and promote the deeper learning that we want for our students…” -Candyce Reynolds, associate professor, Post-Secondary, Adult, and Continuing Education, School of Education, Portland State University, from PeerReview: Emerging Trends and Key Debates in Undergraduate Education

What Is an E-portfolio?

There are now more ways than ever to showcase one’s work as a student or professional. Long gone are the days of lugging around an actual folder full of plastic sleeves containing paper prints. Today, students and professionals routinely choose electronic contexts to house their best works. This digital context for storing selected pieces is referred to as an electronic portfolio or e-portfolio, and the items in the portfolio are referred to as artifacts.

To best understand what we are talking about when we speak of e-portfolios, let’s start with a definition. As a former instructor of English to speakers of other languages, I find that word etymology opens my eyes to rich context. For example, in this case, “port” is Latin for haven or harbor. And the “folio” part of the word comes from the Latin word “folium,” which means leaf (foliage) or sheet. From these etymological roots, we can think of the word portfolio as translating to a harbor or haven for your sheets of paper, in a sense.

In order to contextualize this definition within a contemporary academic setting, I turn to a working definition of e-portfolios, such as this one from Lorenzo and Ittleson: “An e-portfolio is a digitized collection of artifacts, including demonstrations, resources, and accomplishments that represent an individual, group, community, organization, or institution.” In other words, for our purposes, an e-portfolio is a selection of a student’s best works, displayed in an electronic format.

The electronic portfolio may be used for assessment or to track progress in a course, for example. An e-portfolio may take the form of a number of electronic contexts, including a user-friendly web-based website design (such as Wix), within the modules of a learning management system (LMS) such as Canvas, in video, as docs within a Google Drive folder, or even within a simple pdf document (Lorenzo and Ittleson). In any case, there are two main elements in an e-portfolio: a digital context and a selection of works.

The Benefits: Here Are a Few Things That E-portfolios Can Do:

  • foster learning communities in online graduate programs. – Bolliger, D.U. (2010) Journal of Distance Education
  • encourage independence and self-directed learning (which is an element of Heutagogy, or taking responsibility for one’s own learning as an autonomous, lifelong learner)
  • prompt students (and faculty) to articulate connections among the products of their courses, the overall program or course curriculum, and larger life goals
  • prepare students for applying to graduate programs or employment, which can be highly motivating and engaging for students
  • give students the opportunity to use higher order thinking skills and metacognition when evaluating their own work (or the work of others, as with e-portfolio peer reviews)
  • provide faculty with a rich source of data, which they can use to evaluate the effectiveness of courses or programs

What Students Are Saying

Student voices from The Benefits of E-portfolios for Students and Faculty in Their Own Words:

“I didn’t realize the importance of the work I was doing… all the communication skills I was learning while doing research… When I had a chance to reflect on it and was asked to describe the experience to others in my e-portfolio, I realized that I had learned a lot more than I thought. I was so focused on getting into business school, that if I had not had the space to stop and reflect on my experiences, I would have never known how much I actually gained from everything I did my first year.” Second-year student, University of Michigan

“I feel that the process has enhanced my understanding of the overall higher education experience… I have always felt confused and irritated by the lack of connection between my general education requirements and my core department requirements. I think that the e-portfolio is a great way to link the two… It was encouraging to see that I was attending college for my own personal and professional growth.” Student, Portland State University

Examples of Student E-portfolios & Platforms

  • LaGuardia Community College: Student E-portfolios
  • Pathbrite: An e-portfolio platform
  • Digication: Explore e-portfolios
  • E-portfolios can be as complex as building a website, as in the above examples, or as simple as a group of final essays (or lab reports or other documents) in a digital file folder.

E-portfolios in Your Course

Would you like to include an e-portfolio element in your course but not sure where to start or what tools to use? Talk to your instructional designer to get some ideas about various kinds of e-portfolios and whether an e-portfolio would be a good fit for your course.

Have you used e-portfolios in a course before? How did it go? What tools did you use?

Resources & References

IJeP: International Journal of ePortfolio: http://www.theijep.com/index.html

Barrett, H. [TEDxTalks]. (2010, March 10). TEDxASB – Helen Barrett – 2/25/10 [Video file]. Retrieved from https://youtu.be/ckcSegrwjkA

Bolliger, D.U. (2010). Student perceptions of eportfolio integration in online courses. Retrieved from the Journal of Distance Education: https://www.tandfonline.com/doi/abs/10.1080/01587919.2010.513955

Bowman, J., Lowe, B., Sabourin, K. & Sweet, K. (2016). The use of eportfolios to support metacognitive practice in a first-year writing program. Retrieved from International Journal of ePortfolio: http://www.theijep.com/pdf/IJEP221.pdf

Getman-Eraso, J. & Culkin, K. (2017). Close reading: engaging and empowering history students through document analysis on eportfolio. Retrieved from International Journal of ePortfolio: http://www.theijep.com/pdf/IJEP242.pdf

Kelly-Riley, D., Elliot, N, & Rudniy, A. (2016). An empirical framework for eportfolio assessment. Retrieved from International Journal of ePortfolio: http://www.theijep.com/pdf/IJEP224.pdf

Lorenzo, G. & Ittelson, J. (2005). An overview of e-portfolios [Report]. Retrieved from EDUCAUSE Learning Initiative (ELI) website: https://library.educause.edu/~/media/files/library/2005/1/eli3001-pdf.pdf

Lorenzo, G. & Ittelson, J. (2005). Demonstrating and assessing student learning with e-portfolios [Report]. Retrieved from EDUCAUSE Learning Initiative (ELI) website: https://library.educause.edu/~/media/files/library/2005/1/eli3003-pdf.pdf

Miller, R. & Morgaine, W. (2009). The Benefits of E-portfolios for Students and Faculty in Their Own Words. Retrieved from PeerReview: Emerging Trends and Key Debates in Undergraduate Education: https://www.aacu.org/sites/default/files/files/peerreview/Peer_Review_Winter_2009.pdf

Song, B. & August, B. (2002). Using portfolios to assess the writing of ESL students: a powerful alternative? Retrieved from Journal of Second Language Writing: https://www.sciencedirect.com/science/article/pii/S106037430200053X

Image Source: Pixabay (Creative Commons License)