What’s An Image’s Value?

Image of postcard with a picture is worth a thousand words written on it.

Have you ever created an online course without using images? No?

That is not surprising as images can convey emotions, ideas, and much more. Their value is often captured in an old adage: A picture is worth a thousand words.

This article will discuss the value of images in online course design and how using visuals to accompany instruction via text or narration might contribute to or detract from an online learning experience. Let’s begin.

Multimedia Learning: Images, Text, and More

Online learning is a modern form of multimedia learning. Richard Mayer (2009) described multimedia learning as that learning that integrates the use of words and pictures. In traditional classrooms these learning resources might be experienced as: 

  • Textbooks:  Text and illustrations.
  • Computer-based lessons: Narration w/animation
  • Face-to-face slide presentations: Graphics and audio.

In online learning multimedia may also include:

  • eBooks: Text and digital images 
  • Video: Text, images, animations, coupled with audio.
  • Interactives: Maps, images, and video.
  • Digital Visual Representations: Virtual worlds and 3D models.
  • Screencasts: Software demos, faculty video feedback, and more.
  • Audio: Enhanced podcasts or narrated lectures.

These two short lists, although not exhaustive, demonstrates the importance of visual elements to multimedia based learning in online courses. There are many reasons why we might include any one of these multimedia learning experiences in an online course. For our purposes we will explore a bit more the instructional value of visuals to online learning.

So, how do words and pictures work together to help shape learning? Given that this is perhaps the most common learning object used in an online course it would seem useful to understand what may be considered this simple interpretation of visual literacy for learning (Aisami, 2015).

Visual Engagement Of A Learning Object

In a recent study of how people acquire knowledge from an instructional web page Ludvik Eger (2018) used eye tracking technology to examine a simple learning object composed of a title (headline), a visual element (i.e., diagram), and a box of written text. With no audio support for the learning object in this study, participants engaged the content via visual engagement alone. Results indicated that the majority of students started their learning process at the headline or the headline and visual element. The box of information, in text form, was the third part of the learning object engaged.

Within this context eye movement analysis indicates a learning process that is dependent upon a consistent visual flow. Purposely connecting the title, visual element and information text of a learning object may best reinforce learning. By doing this the course designer/instructor becomes a sort of cognitive guide either focusing or not-focusing learning via the meaning structure of the various learning object elements. In our case we want to use visual elements to support performance and achievement of learning tasks.

Choosing Visual Elements

In order to explore the choice of visual elements in an online learning experience it is helpful to understand how we process that experience from a cognitive science perspective.

Clark and Mayer (2016) describe that cognitive science suggests knowledge construction is based upon three principles: Dual channels, limited capacity and active processing. Let’s briefly examine what these are.

Dual channels:

People have two channesl of cognitive processing 1) for processing visual/pictorial material and 2) one for auditory/verbal material. See Figure 1.  below.

 

Model of cognitive model of multimedia learning.
Figure 1.: Model of the Cognitive Theory of Multimedia Learning

Limited capacity:

Humans can only process a few bits of pieces of information in each channel at the same time.

Active processing:

Learning occurs as people engage in cognitive processing during learning. This may include attending to relevant material, organizing that material into a coherent structure, and integrating that material with prior knowledge.

Due to the limits on any learner’s processing capability it is paramount that we select visual images that help manage the learning process. Our goal is to limit excessive processing that clutters the learning experience, build visual support for representing the core learning process, and provide visual support that fosters deeper understanding of the learning at hand. What does this mean in practice?

Managing Processing Via Image Use

Making decisions about image selection and use is a key to managing this learning process. Understanding the meaning of images to select is also key and is really a function of literacy in one’s field and visual literacy in general (Kennedy, 2013).

In practice we can use the following guidelines to make decisions about image use in multimedia-based online learning. 

  • Control Visual Elements – Too many images on a web page or slide may force extraneous cognitive processing that does not support the instructional objective. 
  • Select Visual Elements Carefully – Images difficult to discern are likely to negatively impact learning. Think about good visual quality, emotional and intellectual message of the image, information value, and readability.
  • Use Focused Visual Elements – Target selection of visual support to those images that represent the core learning material and/or provide access to deeper understanding of that core content.

Other Image Tips

Emotional Tone: Emotional design elements (e.g., visuals) can play important roles in motivating learners and achievement of learning outcomes (Mayer, 2013).

Interest: Decorative images may boost learner interest but do not contribute to higher performance in testing (Mayer, 2013). Use decorative images prudently so they do not contribute to extraneous learning processing (Pettersson & Avgerinou, 2016).

Challenge: Making image selections that contribute to a degree of confusion may challenge learnings to dive more deeply into core learning. This is a tenuous decision in that challenge in sense making may prove to foster excessive processing.

Access: Images must be presented in a format that is viewable to users to be practical. This involves an understanding of technical features of image formats, download capability, mobile use, and universal design techniques.

Final Thoughts

It is valuable to remember that visuals communicate non verbally. They are most effectively used when carefully selected and paired with text or audio narration. Visuals appeal to the sense of sight. They have different classifications and could be pictures, symbols, signs, maps graphs, diagrams, charts, models, and photographs. Knowing their form, meaning, and application is part of being a visually literate course developer or instructional designer.

Web Resources

References

Aisami, R. S. (2015). Learning Styles and Visual Literacy for Learning and Performance. Procedia – Social and Behavioral Sciences, 176, 538-545. doi:10.1016/j.sbspro.2015.01.508

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction : Proven guidelines for consumers and designers of multimedia learning. Retrieved from http://ebookcentral.proquest.com

Eger, L. (2018). How people acquire knowledge from a web page: An eye tracking study. Knowledge Management & E-Learning: An International Journal 10(3), 350-366.

Kennedy, B. (2013, November 19). What is visual literacy?. [Video file]. Retrieved from https://www.youtube.com/watch?time_continue=1&v=O39niAzuapc

Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and Instruction, 29, 171-173. doi:10.1016/j.learninstruc.2013.04.003

Rune Pettersson & Maria D. Avgerinou (2016) Information design with teaching and learning in mind, Journal of Visual Literacy, 35:4, 253-267, DOI: 10.1080/1051144X.2016.1278341

 

Credit: Embedded image by Kelly Sikkema on Unsplash.com

If you’ve ever needed an excessive amount of photographs or diagrams to accurately describe a physical object for your class, you may benefit from a 3D model.

Standard media types, including text, photographs, illustrations, audio, video, and animation, are crucial to the online learning experience. A 3D model is essentially another media type with a lot of unique qualities.

What is a 3D model?

3D models, in this case, are digital representations of physical objects. 3D models generally consist of a polygon mesh and a surface texture. The polygon mesh is a “shell” comprised of the different surfaces of a 3-dimensional object. There are three main components that make up this shell: vertices (points), edges (lines), and faces (planes). For what should be clear from the previous sentence, polygon meshes are often referred to as simply “geometry.” There are a lot of other technical terms associated with polygon meshes, but in practical application, you may never need to learn them.

The surface texture, at its most basic, is an image, mapped onto the surface of the polygon mesh.

A texture can be as simple as a solid color, or as complex as a high-resolution photograph. The texture will be wrapped onto the surface of the geometry with the help of a set of instructions called UVs. UVs are a complex topic in and of themselves, so it’s good enough that you just know they exist conceptually.

These textures can have physics-based properties that interact with light to produce effects such as transparency, reflection, shadows, etc.

You’re probably thinking to yourself now, that 3D models are too complicated to be of use in your courses, but that’s not necessarily true. The composition and inner workings of 3D models are complicated, for sure, but you don’t need to be an expert to benefit from them.

Where did they come from, and how are they used?

There probably isn’t a day that goes by where you don’t experience a 3D model in some way. They are everywhere.

3D models, in digital form, have been around for decades. They have been used in industrial applications extensively. 3D models are used to generate toolpaths for small and large machines to manufacture parts more consistently than a human could ever hope to. 3D models are also used to generate toolpaths for 3D printers.

3D models are used in movies, animations, and video games. Sometimes entire worlds are created with 3D models for use in virtual and augmented reality.

Modern interfaces for computers and smartphones are awash in 3D graphics. Those graphics are rendered on the screen from 3D models!

How can they help me as an educator?

If you’re still not convinced that 3D models hold any benefit to you, I’ll explain a few ways in which they can enrich your course materials.

  1. 3D models are easily examined and manipulated without damage to physical specimen.
    • If you are involved in teaching a course with physical specimens, you are no doubt familiar with the concept of a “teaching collection.” A teaching collection is a high-turnover collection that gets handled and examined during class. Normally these collections break down quickly, so instructors are hesitant to include rare and fragile specimens. Having digital proxies for these rare and fragile specimens will allow students access to otherwise unknown information. This has even bigger benefits to distance students, as they don’t have to be anywhere near the collection to examine its contents.
  2. 3D models give students unlimited time with a specimen
    • If you have a biology lab, and the students are looking at skull morphology, there’s a distinct possibility that you would have a skull on hand to examine. If there are 30 students in the course, each student will have only a short amount of time to examine the specimen. If that same skull was scanned and made into a 3D model, each student could examine it simultaneously, for as long as they need.
  3. 3D models are easily shared
    • Many schools and universities around the world are digitizing their collections and sharing them. There is a fair amount of overlap in the models being created, but the ability to add regionally exclusive content to a global repository would be an amazing benefit to science at large. Smaller schools can have access to a greater pool of materials, and that is good for everyone.
  4. 3D models have presence
    • A 3D model is a media object. That means it can be examined, but it’s special in the way that it can be interacted with. Functionality can be built on and around a 3D model. Models can be manipulated, animated, and scaled. A photograph captures the light bouncing off of an object, that is closer to a description of the object.  A 3D model is a representation of the actual physical properties of the object, and that strikes at the nature of the object itself. This means that a 3D model can “stand in” for a real object in simulations, and the laws of physics can be applied accurately. This realistic depth and spatial presence can be very impactful to students. Much more so than a simple photograph.
  5. 3D models can be analyzed
    • Because 3D models are accurate, and because they occupy no physical space, they lend themselves to analysis techniques unavailable to the physical world. Two models can be literally laid on top of one another to highlight any differences. Measurements of structures can be taken with a few clicks. In the case of a machined part, material stress tests can be run over and over without the need to replace the part.

These are only a few of the ways that an educator could leverage 3D models. There are many more. So, if you still find 3D models interesting, you’re probably wondering how to get them, or where to look. There are a lot of places to find them, and a lot of techniques to build them yourself. I’ll outline a few.

Where do I get them?

3D models are available all over the internet, but there are a few reputable sources that you should definitely try first. Some will allow you to download models, and some will allow you to link to models on their site. Some will allow you to use the models for free, while others will require a fee. Some will have options for all of the aforementioned things.

How do I create them?

The two main ways to create 3D models are scanning and modeling.

Scanning can be prohibitively expensive, as the hardware can run from a few hundred dollars, to many thousands of dollars. But, like anything else technological, you get what you pay for. The quality is substantially better with higher-end scanners.

For something a little more consumer-grade, a technique called photogrammetry can be employed. This is a software solution that only requires you to take a large series of photographs. There is some nuance to the technique, but it can work well for those unable to spend thousands of dollars on a 3D scanner. Some examples of photogrammetry software include PhotoScan and COLMAP.

Modeling has a steep learning curve. There are many different software packages that allow you to create 3D models, and depending on your application, some will be better suited than others. If you are looking to create industrial schematics or architectural models, something likeFusion 360, AutoCad, or Solidworks might be a good choice. If you’re trying to sculpt an artistic vision, where the precise dimensions are less important, Maya, Blender, Mudbox or Zbrush may be your choice.

How to use them in your class:

There are a number of ways to use 3D models in your class. The simplest way is to link to the object on the website in which it resides. At OSU Ecampus, we use the site, SketchFab, to house our 3D scans. The source files stay with us as we create them, but we can easily upload them to SketchFab, brand them, and direct students to view them. SketchFab also allows us to add data to the model by way of written descriptions andannotations anchored to specific structures in the model.

The models hosted on SketchFab behave similarly to YouTube videos. You can embed them in your own site, and they are cross-platform compatible. They are even mobile-friendly.

As you can see, there is a lot to learn about 3D models and their application. Hopefully, I’ve broken it down into some smaller pieces that you can reasonably pursue on your own. At the very least, I hope that you have a better understanding of how powerful 3D models can be.

A big THANK YOU to Nick Harper, Multimedia Developer, Oregon State University Ecampus