As a follow-up to discussing equity in grading and group work, Feldman (2019) offers a compelling case against the use of extra credit. “But wait a minute,” I can hear you saying, “Extra credit is optional—students have to opt-in if they want to do it! And it can be fun! What’s wrong with that?” Many instructors may think of extra credit as a way to benefit students and give them extra opportunities in a course, especially at the end of a term, to improve their grade, take on additional challenges, and demonstrate additional skills they have learned. (I know I thought about extra credit that way at one time!) However, there is more at play with extra credit than you might think. Let’s return to Feldman’s three pillars of equitable grades:

  1. “They are mathematically accurate, validly reflecting a student’s academic performance.
  2. They are bias-resistant, preventing biased subjectivity from infecting our grades.
  3. They motivate students to strive for academic success, persevere, accept struggles and setbacks, and to gain critical lifelong skills” (Feldman, p. 71).

With these three pillars in mind, let’s examine some potential issues with extra credit:

  1. Accuracy: There are many ways extra credit can obscure what information a grade includes. First, it can be used to incentivize certain behaviors, which obscures a grade by not assessing academic performance or learning. (For example, extra credit for turning things in on time.) Second, it can obscure whether a grade reflects what students know by turning grades into a commodity (more about this below). In this way, grades are a reflection of how many points students are able to accumulate, not necessarily how much they have learned or whether they have met all of a course’s learning outcomes.This kind of extra credit can unintentionally signal to students that their behavior and non-academic performance in a course is more important than their learning.
  2. Bias: Sometimes extra credit is awarded to incentivize students to participate in extra events or opportunities, like attending a webinar, guest lecture, local event, etc. However, in addition to treating grades like a commodity, this kind of incentive also makes it difficult for students without outside resources or help to engage. What about students without the money for event tickets, transportation, child or family care, and/or without the time away from work, family, etc.? They are unable to participate, even if they want to, due to external factors outside of their control. And often these are the students who could potentially benefit the most from additional points if they are already struggling because of these exact conditions. For extra credit that provides extra challenges beyond the course materials, only the students already doing well will be able to participate and benefit from the opportunity, additionally shutting out students who are already behind.
  3. Motivation: Having extra credit, especially at the end of the course, can also be damaging to student motivation, as it places an emphasis on grades and points instead of learning. For example, some students may prioritize obtaining a desired grade above learning important content, while other students may use extra credit to bolster a weak area they were unable to fully grasp, thereby giving up on learning that material entirely. Both of these potential mindsets set students up to focus on a product (grade) more than learning and any future perspectives they might have about their learning.

One additional issue of extra credit to consider is the additional work and time on instructors for both designing additional assignments and grading the extra work, especially at the end of a term when there is usually a plethora of assignments, exams, and projects to grade.

“If the work is important, require it; if it’s not, don’t include it in the grade.”

Feldman, p. 122.

So, what options can we give students that are more equitable as an alternative to extra credit? Instead of creating additional assignments, allow students to revise and resubmit work. This shift can help support students by encouraging them to learn from past mistakes, build on their learning, and see their growth over time. Revisions and resubmissions don’t have to only happen at the end of the term, so instructors can also consider timing of revisions based on course design, formative and summative assessment timing, and their own workloads. It also helps students who may be struggling with outside barriers to have additional attempts to complete work they may have missed. It also means that students cannot opt-out of important work or concepts because they cannot substitute those points from other areas of the course. Lastly, it saves the instructor time from designing and implementing additional assignments and complicated grading setups at the end of a term when instructors are often the busiest. While the use of extra credit is often from a place of good intentions, I hope this brief outline helps recontextualize how it may have a larger, negative impact in your course than you may have initially thought, as well as a strategy for replacing it in your course designs.

References

Feldman, J. (2019). Grading for equity: What it is, why it matters, and how it can transform schools and classrooms. Thousand Oaks, CA: Corwin.

One of the most common concerns that instructors raise about teaching online is how to engage students in meaningful interactions. Online discussion boards is the default for simulating the types of conversations that take place in a classroom, albeit the online environment favors written communication in the form of posts and replies. These written posts may be the easiest ways of communication in online learning environments offering students less overwhelming experiences and more opportunities for critical thinking and building community (see benefits of discussion boards). However, written communication is not the only way in which students can interact with one another -images, audio, or video can increase engagement and motivation. Still, these options are not intuitively built into online discussion forums. 

The discussion board option appears to be boring and demotivating -it sounds more like a chore than an activity where students build community and participate in the exchange of ideas and perspectives – where they grow intellectually and as individuals. Online discussions can turn into spaces for dialogue, debates, and community. How do we design these spaces so that students engage and interact more meaningfully? Well, let’s explore a tiered approach to spark engagement in online discussions.

Tier 1: Revamp Discussion Boards

Consider the Community of Inquiry framework (CoI) in facilitating deep, engaging, and meaningful learning. The three elements of this framework can be used to design discussion boards: social presence, cognitive presence, and teaching presence. Ragupathi (2016) describes these presences in online courses as follows: “Social presence that will encourage students to present their individual personalities/profiles, help them identify with the community, communicate purposefully and function comfortably in a trusted environment; (2) Cognitive presence that will get students to introduce factual, conceptual, and theoretical knowledge into the discussion and be able to construct/confirm meaning through sustained reflection and discourse; and (3) Teaching presence to provide necessary facilitation of the learning process through effective discussion.” (p. 4). Social presence in particular can be achieved through discussions (although not the only tool) to promote a sense of connection and community. 

Apart from a strong foundation on a sense of connection and community that the CoI promotes, the structure of the discussion assignment plays an important role. To this effect, “structure” and “why” are the key

Revise Structure and Format

  • Establish a clear purpose and add value to the participation/contribution:
    • Instructor-led: contextualize the outcomes, make explicit expectations
    • Student-led: ask students to share their takeaways from the discussion participation (e.g., reflection, embedded in assignments)
    • Connect the content to the discussion assignment (e.g., ask students to refer back or cite previous readings/videos completed in the weekly content)
  • Clearly set expectations for:
    • Grading criteria (e.g., provide a rubric or grading guidelines)
    • Timeframe
    • Resources (e.g., from the course or external)
    • What is a “good post” (e.g., provide an example, describe an example that does not meet expectations)
    • Clarify terminology (e.g., link to a glossary of terms)
  • Support continuity of engagement:
  • Make discussion spaces manageable (students & faculty)

Visit this link for discussion board examples.

Tier 2. Augment the Discussion Boards

The next tier is to augment the opportunities that discussion boards offer. Structure and creativity will intertwine in layers to turn discussions into collaborative spaces. Here, there is greater emphasis on community as a place where students take a more active role, embrace challenges, and own their contribution role as active participants in building knowledge together.

  • Start with setting the discussion board as a place for a conversation:
    • Introductions: encourage students to use additional elements to introduce themselves to the class (e.g., images, videos, goals, expectations). With the caveat that it is optional so they feel comfortable choosing what and how to share. 
  • Create discussion scenarios/questions/prompts that elicit more than one response:
    • Post first before you see previous posts
    • Students post follow-up questions and bring additional examples. Students reply to more than 2 peers who have not received replies yet
    • Encourage students to bring their experiences, outside readings, and additional resources to share
    • Encourage posts in different formats (e.g., video, images, infographics, mindmaps)
  • Student-facilitated discussions:
    • Create small groups and ask students to select a leader (rotate leadership role) Alternatively, randomly assign a leader
    • Student leaders post summaries of discussions in small groups and/or in whole-class discussions
    • Set expected participation: 
  • A minimum number of responses (1 post; 2 replies; number of posts in total)
  • Consider self-paced discussions and encourage students to post a certain number of posts throughout the term or week. (Caveat: the first few students that post might need to wait until others post)
  • Create a learning community for future assignments:
    • Students share initial drafts, outlines, and research topics and ask for comments/feedback. Alternatively, students post their initial work and share their goals, and ideas about how it is relevant. Students are encouraged to read the shared work or not.
    • Beyond the Question and Answer format (e.g., role plays, debates, WebQuests)
    • Set the discussion as a Peer review assignment.  

Tier 3. Beyond Discussion Boards*

The linearity that many discussion board platforms have could make the interaction feel inauthentic, boring, and tedious to navigate. An alternative to a linear discussion is the concept of social annotations and collaborative spaces where students intersect transversally and with multimodal elements.

  • Social Annotations: students can add comments, post questions, vote, and interact with peers over learning materials such as readings, videos, visuals, and websites. Students interact and collaborate based on interests and questions they have while studying the content. You can use social annotations as a learning tool.
  • Asynchronous conversations: increase the collaborative nature of group work with multimodality where students not only post and reply but also create their own content for others to comment on. Explore asynchronous conversations in VoiceThread.
  • Collaborative work: online discussions do not have to be about posts and replies only. Students can engage in meaningful conversations through collaborative work. For example, students can do collaborative assignments, interact synchronously or asynchronously, and comment on each others’ contributions. Some web platforms you can explore include Microsoft Whiteboard and Miro.

Tier 4: Unleash the Discussion Boards

While discussion boards are mainly associated with asynchronous learning environments, discussions can play an important role in hybrid learning. You may be wondering why when we know that one of the underlying features of hybrid learning is to use the class time for active learning, collaborative and team activities, increased participation, and social interaction. But these activities do not have to end when the class time is over. Discussions can help keep students engaged in the class topics and activities after the in-person experience. Any of the tier approaches described above could be integrated seamlessly into hybrid learning to give continuity to class conversations, prep for future in-person activities, foster metacognitive and reflection skills, and strengthen social presence. 

*Note: The use of other tools outside of the Canvas learning management system will require a careful evaluation of accessibility and privacy policies.  

References

By: Julie Jacobs, Jana King, Dana Simionescu, Tianhong Shi

Overview

A recent scenario with our course development team challenged our existing practices with lecture media. Formerly, we had encouraged faculty to include only slides with narration in their lecture videos due to concerns about increasing learners’ cognitive load. Students voiced their hope for more instructor presence in courses, and some instructors started asking about including video of themselves inserted into their lectures. This prompted us to begin thinking about instructor presence in lecture videos more deeply: why were we discouraging faculty from including their faces in lecture videos? While our practices were informed by research-based media theory, we also recognized those theories might be outdated. 

We began to explore the latest research with the following question in mind: does visual instructor presence in lectures increase extraneous cognitive load in learners? We use the phrase “visual instructor presence” to refer to lecture videos where an instructor’s moving image is seen giving the lecture, composited together with their slides. This technique is also commonly referred to as “picture-in-picture”, as seen in the image below.

Image 1: Adam Vester, instructor in College of Business, in his lecture design for BA 375 Applied Quantitative Methods.

A task force was created to review recent research on visual instructor presence and cognitive load, specifically in lecture-type videos. Our literature review included a look at leading multimedia learning scholar Richard E. Mayer’s newest group of principles. We also reviewed more than 20 other scholarly articles, many of which were focused on learner perception, motivation & engagement, and emotion. 

Findings

According to recent work in multimedia learning, research in this area should focus on three areas, namely learning outcomes (“what works/ what does not work?”), learning characteristics (“when does it work?”), and learning process (“how does it work?”) (Mayer, 2020). Below are our conclusions from the 23 research articles we reviewed regarding instructional videos, attempting to answer the above questions of “what works”, “when does it work”, and “how does it work”.  

  1. This review of recent literature shows no evidence that visual instructor presence increases extraneous cognitive load. 
  2. Students tend to prefer lectures with visual instructor presence – they report increased satisfaction and better perceived learning, which can boost motivation and engagement. 
  3. While some studies find no difference in performance outcomes when visual instructor presence is utilized, others found increased performance outcomes with visual instructor presence. Proposed explanations: embodiment techniques such as gestures, eye contact, and body movement which fosters generative processing (the cognitive processes required for making sense of the material); social cues can help direct the learners’ attention; increased motivation (as per point 2 above) contributes to better learning. 
  4. The effects may depend on the specific type of visual instructor presence (e.g., small picture-in-picture, green-screen, or lightboard) and the characteristics of the content (complex/difficult vs simpler/easier). 

Recommendations

Based on these findings, our team has decided to remove the default discouragement of instructors wishing to use picture-in-picture in lectures. If an instructor is interested in having their visual presence in the lectures, we encourage them to discuss this option with their Instructional Designer and Lecture Media Coordinator to determine if this style is a good fit for them and their content.

Image 2: Bryony DuPont, associate professor of Mechanical Engineering, utilizing visual instructor presence in her lecture design for ME 382 Introduction to Design.

We recommend considering the following points:

  • What is their presentation style? Do they tend to spend a lot of time talking over a slide or is there a lot of text or other action (e.g. software demo) happening in the video? If there’s a lot happening on the screen, perhaps it’s better to not put their video on top of it (the instructor video could be placed only at the beginning and/or end instead).
  • What type of content? Is it simple or more complex? For more visually complex content, a lightboard or digital notation without picture-in-picture may work better, to take advantage of the dynamic drawing principle and the gaze guidance principle. 
  • Is it a foreign language course? If so, it’s likely helpful for the learners to see the instructor’s mouth and body language. 
  • Is the instructor comfortable with being on video? If they’re not comfortable with it, it may not add value. This being said, our multimedia professionals can help make instructors more comfortable in front of the camera and coach them on a high-embodied style of lecturing. 

Since implementing these guidelines and working with an increased number of lectures with visual instructor presence, we also noticed that it works best when the instructor does not look and sound like they’re reading. Therefore, for people who like working with a script, we recommend practicing in advance so they can sound more natural and are able to enhance their presentation with embodiment techniques.

We would love to hear about your opinions or experiences with this type of video. Share them in the comments!

For a detailed summary of our findings and full citation list, please see the full Literature Review.


Some form of group work is a common activity that I help design with faculty every term. Oftentimes, faculty ask how to consider the different levels of engagement from individual group members and how to assess group work, often in the form of a group grade. Improving group work in asynchronous courses and group contracts to promote accountability are some of many ways to guide students into collaborative work. However, collaborative work may require offering equitable opportunities to all students to succeed. Based on the work by Feldman (2019), I’d like to outline some suggestions for assessment design through an equity lens.

Before jumping into assessing group work, Feldman outlines three pillars of equitable grades:

  1. “They are mathematically accurate, validly reflecting a student’s academic performance.
  2. They are bias-resistant, preventing biased subjectivity from infecting our grades.
  3. They motivate students to strive for academic success, persevere, accept struggles and setbacks, and to gain critical lifelong skills” (Feldman, p. 71).

With these three pillars in mind, let’s examine some potential issues with a group receiving one grade for their work.

  1. Accuracy: a collective group grade does not necessarily reflect an individual’s contribution to the group work or assess an individual student’s learning in terms of outcomes. For example, if a group splits up sections of a project into individual responsibilities, a student who did their assigned section very well may not have had an opportunity to gain new knowledge or build on their learning for aspects where they were struggling. And a group grade does not accurately capture their individual work or learning.
  2. Bias: Many times peer evaluations of group work come with some kind of group contract or accountability measure. However, there is a possibility for bias in how students evaluate their peers, especially if that evaluation is based on behaviors like turning things in on time and having strong social skills instead of learning. For example, maybe one of the group members had a job with a variable schedule from week to week, making it difficult to join regular group discussions and complete work at the same pace every week for the duration of the project. Other group members may perceive them as difficult to work with or inconsistent in their commitment and award them fewer points in a peer evaluation, especially if other group members did not have outside factors noticeably impacting their performance.
  3. Motivation: Group contracts and using evaluation as a way to promote productivity is an external motivator and does not instill a sense of internal relevance for students participating in group work. Instead, students may feel resentful that their peers may evaluate them harshly for things outside of their control, which can quickly snowball into a student disengaging from group work entirely.

“The purpose of group work is not to create some product in which all members participate, but for each student to learn specific skills or content through the group’s work together.”

Feldman, p. 104

So how do we assess this learning? Individually. If we can reimagine group work as a journey toward an individual reaching a learning outcome, then instead of assessing a behavior (working well and timeliness in a group) or what a group produces, we can instead create an assessment that captures the individual impact of the group work instead. Feldman outlines some tips for encouraging group work without a group grade:

  1. Have a clear purpose statement and overview for the group work that outlines the rationale and benefit of learning that content in a group context.
  2. Have clear evaluation criteria that shows the alignment of the group work with a follow-up individual assessment.
  3. If possible, include students in the process by having a brainstorm or pre-work discussion ahead of time about what makes groups productive, how to ensure students learn material when working in groups, and what kinds of collaborative expectations can be set for a particular cohort of students.
  4. Be patient with students navigating a new assessment strategy for the first time and offer ample feedback throughout the process so students are set up for success on their assessments.
  5. Ensure the follow-up individual assessment is in alignment with learning outcomes and is focused on the content or skills students are expected to gain through group work.

As an added bonus, assessing group work individually in this way is often simpler than elaborate group work rubrics with separate peer evaluations factored in, making it both easier for the instructor and easier for the student to understand how their grade is calculated. Additionally, it will be important to design this group work with intention—if an individual could learn the material on their own, then what is the purpose of the group interaction? Think about a group project you may have assigned or designed in the past. What was the intention for that journey as a group? And how might you reimagine it if there was an individual assessment after its completion? I hope these questions are great starting points for reflecting on group work assessments and redesigning with equity in mind!

References

Feldman, J. (2019). Grading for equity: What it is, why it matters, and how it can transform schools and classrooms. Thousand Oaks, CA: Corwin.

By Cat Turk and Mary Ellen Dello Stritto

In this time of rapid change in online education, we can benefit from leveraging the expertise of faculty who have experienced the evolution of online education. At the Oregon State University (OSU) Ecampus Research Unit, we have been learning from a group of instructors who have taught online for ten years or more. A review of recent research uncovered that these instructors are an untapped resource. Their insights can provide valuable guidance for instructors who are just beginning their careers or instructors who may be preparing to teach online for the first time. Further, their perspectives can also be enlightening for online students.

In 2018-2019 we conducted interviews with 33 OSU faculty who had been teaching online for 10 years or more as a part of a larger study. Two of the questions we asked them were the following:

  1. What skills do you think are most valuable for online instructors to have?
  2. What skills do you think are most valuable for online students to have?

We will share some of the results of a qualitative analysis of these questions and highlight the similarities and differences.

When asked about the most valuable skills for online instructors, three key skills emerged: communication, organization, and time management. When asked about the most valuable skills for online students to have, the same skills were among the most frequently mentioned by these instructors.

As the table below shows, in the responses about skills for online instructors, communication emerged as the most prominent skill, with 85% of instructors in the study emphasizing its importance, while time management and organization were split evenly at 45%. In their response about skills for students, 64% of the instructors emphasized both communication and time management, while 42% discussed organization. When discussing communication for instructors, they indicated that effective communication is essential for building rapport with students, providing clear instructions, and facilitating meaningful interactions in the online environment. Organization (such as structuring course materials or their weekly work process) and time management skills (such as scheduling availability to connect with students) were also highly valued by these instructors. Read more about the analysis of instructor skills here.

 Skills for InstructorsSkills for Students
Communication    28 responses (85%)   21 responses (64%)
Time Management15 responses (45%)  21 responses (64%)
Organization15 responses (45%)   14 responses (42%)
Self-Motivation   —21 responses (64%)            
Frequency of responses of skills for instructors and students.

The responses to both questions emphasized the significance of communication skills in written assignments and in proactive connections within the scope of the online learning environment. Instructors articulated that online students needed to be proactive communicators themselves. Examples of this include contacting their instructors about questions and clarification in a timely way, interacting with their peers in a respectful manner, and turning in quality written assignments that demonstrate comprehension of their learning material. For students, clear and effective communication ensures understanding and engagement, while organization facilitates seamless navigation through course materials, and time management ensures that students are able to make the most of the asynchronous environment.

While time management and organization were both considered by instructors to be just as crucial for students, their responses demonstrated that these skills were needed for different reasons than would be the case for instructors. Instructors personally valued time management and organization due to the nature of facilitating courses online. When the online classroom can travel from place to place, setting blocks of intentional time and structuring hours accordingly were considered essential to instructors for maintaining a work-life balance and so tasks would not be missed.

On the other hand, according to these instructors, students need time management and organization due to the asynchronous and sometimes isolating nature of online courses. One instructor stressed that:

 “[Students] do need to be more organized than on-ground students, because there’s not that weekly meeting to keep students on track.”

These instructors indicated some online students may need to structure their study time to accommodate a different time zone, while others may need to structure their academic pursuits around careers or children. Another instructor emphasized that:

“A lot of our [online students] actually work full-time, so they have families and kids and have to be much more organized too.”

While there were overlaps with the responses to the two questions, a notable difference was the emergence of another skill for students: self-motivation. This concept of self-motivation emerged from the instructor responses about students’ capacity to persevere in online courses. This included their level of motivation, capacity to learn on their own, and comfort with self-paced learning.

One instructor said the following about students’ self-motivation,

“Some people would say it’s self-discipline, but I think it’s more of they have to have a purpose for that class.”

Self-motivation was not mentioned by the instructors as a skill for online instructors, suggesting that these instructors perceive this as more pertinent to students for success in managing their own learning process. It is worth noting that proactive communication was highlighted as an essential aspect of self-motivation, with instructors emphasizing that students who take the initiative in reaching out to them tend to be more successful. This observation suggests that self-motivated individuals are more likely to actively seek support and clarification, which can enhance their learning experience and overall success. 

Another noteworthy aspect was the need for students to be comfortable with learning in physical isolation. Instructors acknowledged that online learners must navigate the challenges of studying independently without the immediate presence of peers and instructors. For online students specifically,

“They need to be motivated because they’re not going to have peers sitting in a classroom with them, and they don’t have a place that they have to physically go every week.”

This finding underscores the importance of maintaining motivation and engagement, as students ideally possess an intrinsic drive to succeed despite the absence of a physical connection to the university and their classmates.

The findings from this study highlight the importance of certain similar skills for both online instructors and students. Effective communication, organization, and time management are vital for success in the online learning environment for both instructors and students. We found this to be an interesting connection that online students might benefit from understanding: these are key skills that students and instructors have in common.

Our findings about self-motivation may be useful for online instructors. Consider incorporating strategies that foster student self-motivation, such as goal-setting exercises, regular check-ins, and providing opportunities for self-reflection. By empowering students to take ownership of their learning, instructors might enhance student engagement and success in the online environment.

Further, students can learn from the instructors’ emphasis on communication, organization, and time management skills. They can intentionally work on improving their communication skills, seeking clarification when needed, and actively participating in online discussions. Developing effective organization and time management strategies, such as creating schedules, prioritizing tasks, and breaking them down into manageable chunks, may significantly enhance their online learning experience.

The field of online education is evolving rapidly, and here we can see how educators and students alike are adapting to these changes. The experiences of long-term online instructors provide valuable insights into the skills necessary for success in the online learning environment. In the future, what answers would we find if we asked students the same question: what do online students think are the skills needed to succeed in the online classroom? By understanding the shared and distinct perspectives of instructors and students, educators can design effective online courses and support systems that foster meaningful learning experiences and empower students to succeed.

An illustration of a person kneeling and question marks around

Have you ever been assigned a task but found yourself asking: “What’s the point of this task? Why do I need to do this?” Very likely, no one has informed you of the purpose of this task! Well, it likely was because that activity was missing to show a critical element: the purpose. Just like the purpose of a task can be easily left out, in the context of course design, a purpose statement for an assignment is often missing too.

Creating a purpose statement for assignments is an activity that I enjoy very much. I encourage instructors and course developers to be intentional about that statement which serves as a declaration of the underlying reasons, directions, and focus of what comes next in an assignment. But most importantly, the statement responds to the question I mentioned at the beginning of this blog…why…?

Just as a purpose statement should be powerful to guide, shape, and undergird a business (Yohn, 2022), a purpose statement for an assignment can guide students in making decisions about using strategies and resources, shape students’ motivation and engagement in the process of completing the assignment, and undergird their knowledge and skills.  Let’s look closer at the power of a purpose statement.

What does “purpose” mean?

Merriam-Webster defines purpose as “something set up as an object or end to be”, while Cambridge Dictionary defines it as “why you do something or why something exists”. These definitions show us that the purpose is the reason and the intention behind an action.

Why a purpose is important in an assignment?

The purpose statement in an assignment serves important roles for students, instructors, and instructional designers (believe it or not!).

For students

The purpose will:

  1. answer the question “why will I need to complete this assignment?”
  2. give the reason to spend time and resources working out math problems, outlining a paper, answering quiz questions, posting their ideas in a discussion, and many other learning activities.
  3. highlight its significance and value within the context of the course.
  4. guide them in understanding the requirements and expectations of the assignment from the start.

For instructors

The purpose will:

  1. guide the scope, depth, and significance of the assignment.
  2. help to craft a clear and concise declaration of the assignment’s objective or central argument.
  3. maintain the focus on and alignment with the outcome(s) throughout the assignment.
  4. help identify the prior knowledge and skills students will be required to complete the assignment.
  5. guide the selection of support resources.

For instructional designers

The purpose will:

  1. guide building the structure of the assignment components.
  2. help identify additional support resources when needed.
  3. facilitate an understanding of the alignment of outcome(s).
  4. help test the assignment from the student’s perspective and experience.

Is there a wrong purpose?

No, not really. But it may be lacking or it may be phrased as a task. Let’s see an example (adapted from a variety of real-life examples) below:

Project Assignment:

“The purpose of this assignment is to work in your group to create a PowerPoint presentation about the team project developed in the course. Include the following in the presentation:

  • Title
  • Context
  • Purpose of project
  • Target audience
  • Application of methods
  • Results
  • Recommendations
  • Sources (at least 10)
  • Images and pictures

The presentation should be a minimum of 6 slides and must include a short reflection on your experience conducting the project as a team.”

What is unclear in this purpose? Well, unless the objective of the assignment is to refine students’ presentation-building skills, it is unclear why students will be creating a presentation for a project that they have already developed. In this example, creating a presentation and providing specific details about its content and format looks more like instructions instead of a clear reason for this assignment to be.

A better description of the purpose could be:

“The purpose of this assignment is to help you convey complex information and concepts in visual and graphic formats. This will help you practice your skills in summarizing and synthesizing your research as well as in effective data visualization.”

The purpose statement particularly underscores transparency, value, and meaning. When students know why, they may be more compelled to engage in the what and how of the assignment. A specific purpose statement can promote appreciation for learning through the assignment (Christopher, 2018).

Examples of purpose statements

Below you will find a few examples of purpose statements from different subject areas.

Example 1: Application and Dialogue (Discussion assignment)

Courtesy of Prof. Courtney Campbell – PHL /REL 344

Example 2: An annotated bibliography (Written assignment)

Courtesy of Prof. Emily Elbom – WR 227Z

Example 3: Reflect and Share (Discussion assignment)

Courtesy of Profs. Nordica MacCarty and Shaozeng Zhang – ANTH / HEST 201

With the increased availability of language learning models (LLMs) and artificial intelligence (AI) tools (e.g., ChatGPT, Claude2), many instructors worry that students would resort to these tools to complete the assignments. While a clear and explicit purpose statement won’t deter the use of these highly sophisticated tools, transparency in the assignment description could be a good motivator to complete the assignments with no or little AI tools assistance.

Conclusion

Knowing why you do what you do is crucial” in life says Christina Tiplea. The same applies to learning, when “why” is clear, the purpose of an activity or assignment can become a more meaningful and crucial activity that motivates and engages students. And students may feel less motiavted to use AI tools (Trust, 2023).

Note: This blog was written entirely by me without the aid of any artificial intelligence tool. It was peer-reviewed by a human colleague.

Resources:

Christopher, K. (02018). What are we doing and why? Transparent assignment design benefits students and faculty alike. The Flourishing Academic.

Sinek, S. (2011). Start with why. Penguin Publishing Group.

Trust, T. (2023). Addressing the Possibility of AI-Driven Cheating, Part 2. Faculty Focus.

Yohn, D.L. (2022). Making purpose statements matter. SHR Executive Network.

Introduction

We’ve all heard by now of ChatGPT, the large language model-based chat bot that can seemingly answer most any question you present it. What if there were a way to provide this functionality to students on their learning management system, and it could answer questions they had about course content? Sure, this would not completely replace the instructor, nor would it be intended to. Instead, for quick course content questions, a chatbot with access to all course materials could provide students with speedy feedback and clarifications in far less time than the standard turnaround required through the usual channels. Of course, more involved questions about assignments and course content questions outside of the scope of course materials would be more suited to the instructor, and the exact usage of a tool like this would need to be explained, as with anything.

Such a tool could be a useful addition to an online course because not only could it potentially save a lot of time, but it could also keep students on the learning platform instead of using a 3rd-party solution to answer questions as is the suspected case right now with currently available chatbots.

To find out what this would look like, I researched a bit on potential LLM chatbot candidates, and came up with a plan to integrate one into a Canvas page.

Disclaimer!
This is simply a proof of concept, and is not in production due to certain unknowns such as origin of the initial training data, CPU-bound performance, and pedagogical implications. See the Limitations and Considerations section for more details.

How it works

The main powerhouse behind this is an open source, Large Language Model (LLM) called privateGPT. privateGPT is designed to let you “ask questions to your documents” offline, with privacy as the goal. It therefore seemed like the best way to test this concept out. The owner of the privateGPT repository, Iván Martínez, notes that privacy is prioritized over accuracy. To quote the ReadMe file from GitHub:

100% private, no data leaves your execution environment at any point. You can ingest documents and ask questions without an internet connection!

privateGPT, GitHub Site

privateGPT, at the time of writing, was licensed under the Apache-2.0 license, but during this test, no modifications were made to the privateGPT code. Initially, when you run privateGPT, train it on your documents, and ask it questions, you are doing all of this locally through a command line interface in a terminal window. This obviously will not do if we want to integrate it into something like Canvas, so additional tools needed to be built to bridge the gap.

I therefore set about making two additional pieces of software: a web-interface chat box that would later be embedded into a Canvas page, and a small application to connect what the student would type in the chat box to privateGPT, then strip irrelevant data from its response (such as redundant words like “answer” or listing the source documents for the answer) and push that back to the chat box.

A diagram showing how the front-end of the system (what the user sees) interacts with the back-end of the system (what the user does not see). Self-creation.

Once created, the web interface portion, running locally, allows us to plug it into a Canvas page, like so:

A screenshot showing regular Canvas text on the left, and the chat box interface on the right, connected to the LLM.

Testing how it works

To begin, I let the LLM ‘ingest’ the Ecampus Essentials document provided to course developers on the Ecampus website. Then I asked some questions to test it out, one of which was: “What are the Ecampus Essentials?”

I am not sure what I expected here, as it is quite an open ended question, only that it would scan its trained model data and the ingested files looking for an answer. After a while (edited for time) the bot responded:

A video showing the result of asking the bot “What are the Ecampus Essentials?”

A successful result! It has indeed pulled text from the Ecampus Essentials document, but interestingly has also paraphrased certain parts of it as well. Perhaps this is down to the amount of text it is capable of generating, along with the model that was initially selected.

A longer text example

So what happens if you give it a longer text, such as an OpenStax textbook? Would it be able to answer questions students might have about course content inside the book?

To find out, I gave the chatbot the OpenStax textbook Calculus 1, which you can download for free at the OpenStax website. No modifications were made to this text.

Then I asked the chatbot some calculus questions to see what it came up with:

Asking two questions about certain topics in the OpenStax Calculus 1 book.

It would appear that if students had any questions about mathematical theory, they could get a nice (and potentially accurate) summary from a chatbot such as this. Though this brings up some pedagogical considerations such as: would this make students less likely to read textbooks? Would this be able to search for answers to quiz questions and/or assignment problems? It is already common to ask ChatGPT to provide summaries and discussion board replies, would this bot function in much the same way?

Asking the chatbot to calculate things, however, is where one would run into the current limitations of the program, as it is not designed for that. Simple sums such as “1 + 1” return the correct answer, as this is part of the training data or otherwise common knowledge. Asking it to do something like calculate the hypotenuse of a triangle using Pythagorus’ theorem will not be successful (even using a textbook example of 32 + 42 = c2). The bot will attempt to give an answer, but its accuracy will vary wildly based on the data given to it. I could not get it to give me the correct response, but that was expected as this was not in the ingested documentation.

Limitations and Considerations

OK, so it’s not all perfect – far from it, in fact! The version of privateGPT I was using, while impressive, had some interesting quirks in certain responses. Responses were never identical either, but perhaps that is to be expected from a generative LLM. Still, this would require further investigation and testing in a production-ready model.

How regular and substantive interaction (RSI) might be affected is an important point to consider, as a more capable chatbot could impact the student-instructor Q&A discussion board side of things without prior planning on intended usage.

A major technical issue was that I was limited to using the central processing unit (CPU) instead of the much faster graphics processing unit (GPU) used in other LLMs and generative AI tools. This meant that the time between the question being sent and the answer being generated was far higher than desired. As of writing, there appears to be a way to switch privateGPT to GPU instead, which would greatly increase performance on systems with a modern GPU. The processing power required for a chatbot that more than one user would interact with simultaneously would be substantial.

Additionally, the incorporation of a chatbot like this has some other pedagogical implications, such as how the program would respond to questions related to assignment answers, which would need to be researched.

We also need to consider the technical skill required to create and upkeep a chatbot. Despite going through all of this, I am no Artificial Intelligence or Machine Learning expert; a dedicated team would be required to maintain the chatbot’s functionality to a high-enough standard.

Conclusion

In the end, the purpose of this little project was to test if this could be a tool students might find useful and could help them with content questions faster than contacting the instructor. From the small number of tests I conducted, it is very promising, and perhaps a properly built version could be used as a private alternative to ChatGPT, which is already being used by students for this very purpose. A major limitation was running the program from a single computer with consumer components made 3 years ago. With modern hardware and software – perhaps a first-party integrated version built directly into a learning management system like Canvas – students could be provided with their own course- or platform-specific chatbot for course documents and texts.

If you can see any additional uses, or potential benefits or downsides to something like this, leave a comment!

Notes

  1. Martínez Toro, I., Gallego Vico, D., & Orgaz, P. (2023). PrivateGPT [Computer software]. https://github.com/imartinez/privateGPT.
  2. “Calculus 1” is copyrighted by Rice University and licensed under an Attribution-NonCommercial-Sharealike 4.0 International License (CC BY-NC-SA).

I have always struggled with test anxiety. As a student, from first-grade spelling tests through timed essay questions while earning my Masters of Science in Education, I started exams feeling nauseous and underprepared. (My MSEd GPA was 4.0). I blame my parents. Both were college professors and had high expectations for my academic performance. I am in my 50s, and I still shutter remembering bringing home a low B on a history test in eighth grade. My father looked disappointed and told me, “Debbie, I only expect you to do the best you can do. But I do not think this is the best you can do.” 

I am very glad my parents instilled in me a high value of education and a strong work ethic. This guidance heavily influenced my own desire to work in Higher Ed. Reflecting on my own journey and the lingering test anxiety that continues to haunt me, it has become evident that equipping students with comprehensive information to prepare for and navigate quizzes or exams holds the potential to alleviate the anxiety I once struggled with.

Overlooking the instructions section for an exam, assignment, or quiz is common among instructors during online course development. This might seem inconsequential, but it can significantly impact students’ performance and overall learning experience. Crafting comprehensive quiz instructions can transform your course delivery, fostering a more supportive and successful student learning environment.

The Role of Quizzes in Your Course

Quizzes serve as diagnostic and evaluative tools. They assess students’ comprehension and application of course materials, helping identify knowledge gaps and areas for additional study. The feedback instructors receive through student quiz scores enables instructors to evaluate the effectiveness of the course learning materials and activities and understand how well students are mastering the skills necessary to achieve the course learning outcomes. This enables instructors to identify aspects of the course design needing improvement and modify and adjust their teaching strategies and course content accordingly. By writing thorough and clear quiz instructions, you support students’ academic growth and improve the overall quality of your course.

Explain the Reason

Explain how the quiz will help students master specific skills to motivate them to study. The skills and knowledge students are expected to develop should be clearly defined and communicated. Connect it to course learning outcomes and encourage students to track their progress against them (Align Assessments, Objectives, Instructional Strategies – Eberly Center – Carnegie Mellon University, n.d.).

Why did you assign the quiz? Would you like your students to receive frequent feedback, engage with learning materials, prepare for high-stakes exams, or improve their study habits?

Equipping Students for Successful Quiz Preparation

Preparing for a quiz can be daunting for students. To help them navigate this process, provide a structured guide for preparation. Leading up to the quiz, you may want to encourage your students to:

  1. Review the lectures: Highlight the importance of understanding key concepts discussed.
  2. Review the readings: Encourage students to reinforce their understanding by revisiting assigned readings and additional materials.
  3. Engage in review activities: Suggest using review materials, practice questions, or study guides to cement knowledge.
  4. Participate in discussions: Reflecting on class discussions can offer unique insights and deepen understanding.
  5. Seek clarification: Remind students to contact their instructor or teaching assistant for any questions or clarifications. You add a Q&A discussion forum for students to post questions leading up to the quiz.

Crafting Clear and Detailed Quiz Instructions 

When taking the quiz, clear instructions are vital to ensure students understand what is expected of them. Here’s a checklist of details to include in your quiz instructions:

  1. Time Limit: Explicitly mention the duration of the quiz, the amount of time students have to complete the quiz once they have started it, or if it’s untimed. Suggest how they may want to pace the quiz to ensure they have time to complete all the questions.
  2. Availability Window: You should specify an availability window for asynchronous online students. It refers to the time frame during which the quiz can be accessed and started. By giving an extended window, you allow students to take the quiz at a time that suits them. Once they begin, the quiz duration will apply.
  3. Number of Attempts: Indicate whether students have multiple attempts or just a single opportunity to take the quiz.
  4. Question Format: Provide information about the types of questions included and any specific formatting requirements. 
  5. Quiz Navigation: Have you enforced navigational restrictions on the quiz, such as preventing students from returning to a question or only showing questions one at a time? Share this information in the instructions and explain the reasoning.
  6. Point Allocation: Break down how points are distributed, including details for varying point values and partial credit.
  7. Resources: Specify whether students can use external resources, textbooks, or notes during the quiz.
  8. Academic Integrity Reminders: Reinforce the importance of academic integrity, detailing expectations for honest conduct during the quiz.
  9. Feedback and Grading: Clarify how and when students will receive feedback and their grades.
  10. Showing Work: If relevant, provide clear guidelines on how students present their work (solving equations, pre-writing activities, etc.) or reasoning for particular question types.

End with a supportive “Good Luck!” to ease students’ nerves and inspire confidence.

Crafting comprehensive quiz instructions is a vital step in ensuring successful course delivery. Providing students with clear expectations, guidelines, and support enhances their quiz experience and contributes to a positive and productive learning environment (Detterman & Andrist, 1990). As course developers and designers, we are responsible for fostering these optimal conditions for student success. Plus, as my father would say, it is satisfying to know you have “done the best you can do.”

References

Align Assessments, Objectives, Instructional Strategies—Eberly Center—Carnegie Mellon University. (n.d.). Eberly Center: Carnegie Mellon University. Retrieved June 28, 2023, from https://www.cmu.edu/teaching/assessment/basics/alignment.html

Detterman, D. K., & Andrist, C. G. (1990). Effect of Instructions on Elementary Cognitive Tasks Sensitive to Individual Differences. The American Journal of Psychology, 103(3), 367–390. https://doi.org/10.2307/1423216

Footnote: My son called as I was wrapping up this post. I told him I was finishing up a blog post for Ecampus. “I kind of threw Grandpa under the bus,” I said. After I shared the history test example, he said, “you didn’t learn much.” He and his sister felt similar academic pressure; I may have even used the same line about the best you can do. In my defense, he is now. Ph.D. candidate in Medicinal Chemistry and his sister just completed a Masters in Marine Bio.

Image by: pingebat, licensed from Adobe Stock

As higher-ed professionals involved in course design, we have the honor, privilege, and responsibility of shaping the learning experiences for countless students. Among the many tools at our disposal, course mapping stands out as a fundamental technique that deserves a spotlight. Couse mapping fosters clarity, and showcases alignment between the learning outcomes/objectives and course materials, assessments and activities. In this blog post, we will explore the importance of course mapping in online higher-ed courses, highlighting its role in meeting the new requirements in the recently updated Quality Matters (QM) rubric 7th edition. Join us as we delve into the transformative power of course mapping, benefiting course developers, instructors, instructional designers, and learners alike.

The Big-Picture:

The updated QM rubric (7th edition) recognizes the strength of course maps as a design tool, and has now made them a required element for course review. To quote the QM rubric update workshop (2023), “the course map must include all of the following components mapped to one another so the connection between them is apparent: course learning [outcomes/] objectives, module learning outcomes/objectives, assessments, materials, activities, and tools.” At its core, course mapping involves creating a visual representation of the entire course curriculum, breaking it down into manageable units, and illustrating the relationships between various components. This visual often takes the form of a table, but many variations exist. Course mapping is a holistic approach, which provides a roadmap for instructors, course developers, and designers to create a comprehensive, cohesive and well-structured learning experience; and for students to easily navigate and find the content and assignments. By explicitly relating the aforementioned course components, course maps simply demonstrate alignment and make clear the purpose of each element as part of the larger picture. 

Orchestrating a Symphony of Learning & Student Success:

With the implementation of the new QM rubric (7th edition), course mapping has gained significant prominence as a means of ensuring alignment and coherence across the curriculum.  By mapping out the weekly outcomes/objecives, learning activities, materials, tools, and assessments, instructors can ensure that each component of the course aligns with the overall outcomes/objetcives. This process can highlight pathways for students to progress logically through the content. Additionally, course mapping facilitates coordination among multiple instructors or instructional designers involved in a course, enabling a consistent design and a more harmonic learning experience for students. Much like a conductor of an orchestra, a course map provides the nuanced direction to each section. Harmony in a design means that elements are unified. Learners benefit from this because they more clearly connect their learning activities with a specific purpose. 

By imbuing the many learning activities with clear purpose (alignment to the outcomes/objectives), learners understand the work they are being asked to complete.  Mapping out course activities also provides instructors with a high-level view of their course, which helps ensure a balanced distribution of learning strategies, which can help accommodate a variety of learning needs. As a result, students are more likely to be engaged, motivated, and empowered to take ownership of their learning, which can lead to improved learning. Course maps act as a first step towards transparent course design, which empowers learners to take initiative and work through problems independently. If we give them all the pieces and help them make connections, they can forge their own pathway to success.

Efficiency and Continuous Improvement:

Course mapping also acts as a vehicle for efficiency and continuous improvement in higher education courses. By visualizing the entire course, instructors and instructional designers can identify potential gaps, redundancies, or misalignments, leading to more effective course revisions. Moreover, the iterative nature of course mapping promotes reflection and collaboration among course developers, instructors, instructional designers, and course reviewers, fostering a culture of continuous improvement. 

Additionally, for instructors the course map then acts as a blue print for the course, which can enhance the connection between the course elements, which can also be helpful if course outcomes/objectives need to change. For instance, courses with detailed maps might be more efficiently adapted, as instructors can easily identify parts of their courses that will need to change and know where to focus their energy.

Assessment and Accreditation – Meeting Quality Standards:

Accreditation bodies and quality assurance agencies like QM place a strong emphasis on clearly defined learning outcomes/objectives and assessment strategies. Course mapping provides a comprehensive framework for demonstrating alignment with quality standards or accreditation competencies. By mapping learning outcomes/objectives to assessments, instructors can provide evidence of student achievement and ensure that all necessary areas are adequately covered. This not only satisfies accreditation requirements but also enhances transparency and accountability within the course, program, and even the institution. At OSU Ecampus, we use the Ecampus Essentials list to ensure we are creating high-quality online and hybrid learning experiences. All Ecampus courses are expected to meet the essential standards and are strongly encouraged to meet the exemplary standards.

Conclusion:

As higher education professionals, we have a shared responsibility to provide transformative courses and programs that prepare learners for the challenges of the future. Course mapping stands as a crucial tool in achieving this goal by fostering alignment, engagement, and continuous improvement. As the new Quality Matters (QM) rubric (7th edition) recognizes, course mapping is an essential practice in creating intentional and effective courses. By investing time and effort in course mapping, instructors and instructional designers can craft coherent and purposeful learning experiences that empower students and maximize their potential for success.

Let’s embrace course mapping as a tool for success in online higher education, ensuring that our courses are meticulously crafted, intentional, and impactful. 

Course Mapping Tools:

  1. The Online Course Mapping Guide
  2. OSU Ecampus Course Planning Chart
  3. Berkeley Digital Learning Services Course Map Template (Public Use)
  4. University of Arizona Course Map Templates

Course Map Samples Shared in the QM Rubric Update:

  1. ACCT 3551 Course Map
  2. Course Alignment Map for HIS 121 American History to 1865

References:

Beckham, R., Riedford, K., & Hall, M. (2017). Course Mapping: Expectations Visualized. Journal for Nurse Practitioners, 13(10), e471–e476. https://doi.org/10.1016/j.nurpra.2017.07.021 

Digital Learning Hub in the Teaching + Learning Commons at UC San Diego. (n.d.). What is a Course Map? The Online Course Mapping Guide. Retrieved July 5, 2023, from https://www.coursemapguide.com/what-is-a-course-map

Quality Matters. (2023, May 22). QM Course Worksheet, HE Seventh Edition. Retrieved July 5, 2023, from https://docs.google.com/document/d/16d1mDaII_kgXvyjeT_brn-TKqACnr_OY_D_r5SnJlC0/edit 

This month brings the new and improved QM Higher Education Rubric, Seventh Edition! To see the detailed changes, you can order the new rubric or take the Rubric Update Session, which is a self-paced workshop that will be required for all QM role holders. In the meantime, if you’d like a short summary of the revisions, continue reading below.

The main changes include:

  • The number of Specific Review Standards has increased from 42 to 44.
  • The points value scheme was also slightly revised, with the total now being 101.
  • A few terminology updates were implemented.
  • The descriptions and annotations for some of the general and specific standards were revised.
  • The instructions were expanded and clarified, with new additions for synchronous and continuous education courses.

Most of the standards (general or specific) have undergone changes consisting of revised wording, additional special instructions, and/or new examples to make the standards clearer and emphasize the design of inclusive and welcoming courses. In addition, some standards have received more substantial revisions – here are the ones that I found the most significant:

Standard 3: There is a new Specific Standard: SRS 3.6: “The assessments provide guidance to the learner about how to uphold academic integrity.” This standard is met if “the course assessments incorporate or reflect how the institution’s academic integrity policies and standards are relevant to those assessments.” SRS 3.6 is the main addition to the 7th edition, and a very welcome one, especially considering the new complexities of academic integrity policies.

Standard 4: SRS 4.5 (“A variety of instructional materials is used in the course.”) has received an important annotation revision – this standard is met if at least one out of three of the following types of variety are present in the course: variety of type of media; different perspectives/representations of ideas; diverse, non-stereotypical representations of persons or demographic groups. I was really happy to see this clarification, since it’s always been a little difficult to evaluate what constitutes “variety”, and reviewers will certainly appreciate the recognition of diversity of people and ideas.

Standard 8: SRS 8.3 was divided into two separate Specific Standards: SRS 8.3 “Text in the course is accessible.” and SRS 8.4 “Images in the course are accessible.” At the same time 8.5 (former 8.4) was turned into “Video and audio content in the course is accessible.” This should allow for a more nuanced evaluation of the various accessibility elements, and it is nice to see the focus on captions for both video and audio materials. Moreover, these three standards (SRS 8.3, 8.4, and 8.5) now include publisher-created content – this is an important step forward in terms of advocating for all educational materials to be made accessible upfront.

In addition to the standards themselves, some changes were made to the Course Format Chart, the Course Worksheet, and the Glossary. Notably, a course/alignment map is now required with the Course Worksheet – a change that is sure to spark delight among QM reviewers. The definitions of activities and assessments were also revised to clarify the distinction between the two – another much-needed modification that should eliminate a common point of confusion.

Overall, the new edition brings about clearer instructions, more relevant examples, and a deeper inclusion of diversity, accessibility, and academic integrity. Reviewers and course designers should find it easier to evaluate or create high quality courses with this updated guidance.