Tag Archives: crab

Working with Dungeness crab fishermen to get a ‘sense’ of low-oxygen conditions off the Oregon coast

Linus tidepooling at Yaquina Head, Oregon Coast.

Linus Stoltz is a graduate student in the Marine Resource Management Master’s Program through the College of Earth Ocean and Atmospheric Sciences, co-advised by Dr. Kipp Shearman and Dr. Francis Chan. Only in his second term, Linus is already diving in to a project that means a lot to Oregon coastal communities.

Dungeness crab is the most profitable state-managed fishery in Oregon, generating $66.7 million dollars in commercial sales over the 2018-2019 season alone. However, an increasing threat to this valuable industry that has caused significant harvest reductions in recent years: hypoxia. Hypoxia refers to low-oxygen conditions in the ocean that have been recorded as occurring more frequently off the Oregon Coast and elsewhere in the Pacific Northwest, where Dungeness crab fishing is a major activity. In some parts of the ocean, such as the Gulf Coast, these conditions are triggered by pollution which causes overproduction of algae, followed by excess decomposition. However, here, it’s more complicated. These conditions are generated by offshore wind- driven movement of cold, nutrient-rich but oxygen-poor deep water across the continental shelf, toward the coast.

This process of ‘upwelling’ (see figure below) is a natural occurrence, but scientists speculate that climate change is making these events more frequent and their characteristics severe. As a Marine Biology major in his undergraduate studies at the University of North Carolina Wilmington, Linus admits that oceanography isn’t exactly in his “wheelhouse” but it doesn’t take an oceanographer to understand that atmospheric conditions are strongly tied to ocean circulation patterns. Referring to graphic representations of Northwest wind stress and dissolved oxygen concentrations, he says “they’re pretty well correlated.” Normally, the offshore winds that drive upwelling are counteracted by a shifting of wind patterns that ultimately allow them to mix sufficiently and re-oxygenate. But the reality is that this is happening less and less frequently.

The process of ‘upwelling’ off the West Coast. Source. www.noaa.gov

What does hypoxia mean for Dungeness crabs? Linus describes the events like waves of low-oxygen water moving slowly across the seafloor. As bottom-dwelling organisms that depend on dissolved oxygen to breathe, if conditions are severe enough or persist long enough, they’ll die. More and more instances of crab fishermen pulling up their gear full of dead crabs prompted them to reach out to scientists for help. Oregon Department of Fish and Wildlife (ODFW) biologists and researchers at Oregon State University (OSU) have been working together since 2002 to try and find answers. Check out this video by ODFW to see real-time footage of a hypoxic wave as it flows over a Dungeness crab pot in 2017.

While we are beginning to understand the bigger picture of the oceanographic conditions that result in hypoxia, Linus explains that we don’t have any models that predict this ‘wave’ on a finer scale. He describes the ocean as patchy, where conditions just a thousand yards away from where a fisherman may have set his or her pots may be completely different. The ultimate goal of his research is to be able to predict these conditions and inform management decisions such as seasonal and/or spatial closures.

The roughly two-foot long Sexton oxygen sensor seen above will be attached to an individual crab pot that will transmit data via Bluetooth to the Deck Data Hub which will then relay the information to a receiver on the OSU campus.

But even more important to fisherman now, the project will also provide ‘in situ’ information fisherman can use to make critical decisions while they’re out there. To achieve this, Linus will be equipping fishermen with sensors to be deployed by Dungeness crab fishermen through the season to collect data on dissolved oxygen. The data recorded by the sensors can be seen immediately by fishermen when they retrieve their pots and will also be automatically transferred via Bluetooth to a box on deck which will ultimately transmit to a receiver on the OSU campus. The hope is to capture the variability in oxygen conditions, while minimizing their impact on fishing operations.

Linus tagging red drum in Hancock Creek when he worked for North Carolina Division of Marine Fisheries (NCDMF).

Before coming to OSU, Linus spent time as an observer for the North Carolina Division of Marine Fisheries testing by-catch reduction technology in the shrimp trawling industry, an experience he recounts as “character-building to say the least.” In other words, Linus knows how important it is to streamline the process if he wants to get any cooperation from fishermen and collecting data can’t be in the way or slow them down. A stark contrast, however, between the interactions between fisherman and researchers on the East Coast to Oregon is that this relationship is more than just cooperative, it’s a collaboration. Fishermen here trust scientists, but at the same time the researchers recognize that fishermen are out there more and are the ones who see changes first-hand.

For Linus, this project represents one of just about any marine science topic he’s excited to be involved in. To learn more about Linus’s journey from SCUBA diving in a cold lake in Ohio as a ten-year old to working as an underwater technician monitoring artificial reefs off the coast of North Carolina, tune in to KBVR 88.7 FM or online February 23, 2020 at 7 P.M.

Crabby and Stressed Out: Ocean Acidification and the Dungeness Crab

One of the many consequences associated with climate change is ocean acidification. This process occurs when high atmospheric carbon dioxide dissolves into the ocean lowering ocean pH. Concern about ocean acidification has increased recently with the majority of scientific publications about ocean acidification being released in the last 5 years. Despite this uptick in attention, much is still unknown about the effects of ocean acidification on marine organisms.

Close-up of a Dungeness crab megalopae

Our guest this week, Hannah Gossner, a second year Master’s student in the Marine Resource Management Program, is investigating the physiological effects of ocean acidification on Dungeness crab (Metacarcinus magister) with the help of advisor Francis Chan. Most folks in Oregon recognize the Dungeness crab as a critter than ends up on their plate. Dungeness crab harvest is a multimillion dollar industry because of its culinary use, but Dungeness crab also play an important role in the ocean ecosystem. Due to their prevalence and life cycle, they are important both as scavengers and as a food source to other animals.

Hannah pulling seawater samples from a CTD Carrousel on the R/V Oceanus off the coast of Oregon

To study the effect of ocean acidification on Dungeness crab, Hannah simulates a variety of ocean conditions in sealed chamber where she can control oxygen and carbon dioxide levels. Then by measuring the respiration of an individual crab she can better understand the organism’s stress response to a range of oxygen and carbon dioxide ratios. Hannah hopes that her work will provide a template for measuring the tolerance of other animals to changes in ocean chemistry. She is also interested in the interplay between science, management, and policy, and plans to share her results with local managers and decision makers.

Hannah working the night shift on the R/V Oceanus

Growing up in Connecticut, Hannah spent a lot of time on the water in her dad’s boat, and developed an interest in marine science. Hannah majored in Marine Science at Boston University where she participated in a research project which used stable isotope analysis to monitor changes in food webs involving ctenophores and forage fish. Hannah also did a SEA Semester (not to be confused with a Semester at Sea) where she worked on a boat and studied sustainability in Polynesian island cultures and ecosystems.  Hannah knew early on that she wanted to go to graduate school, and after a brief adventure monitoring coral reefs off the coast of Africa, she secured her current position at Oregon State.

Tune in Sunday June, 17 at 7 pm PST to learn more about Hannah’s research and journey to graduate school. Not a local listener? Stream the show live or catch the episode on our podcast.

Hannah enjoying her favorite past time, diving!