Author Archives: Kristen Finch

Unearthing the Unseen: Identifying drivers of fungal diversity in Panamanian rainforests

When our roommates or family members get sick, we try to keep our distance and avoid catching their illness. Plants get ‘sick’ too, and in the natural world, this may actually explain the coexistence and diversity of plant species that we see.

Coexistence

Species coexistence relies on competition between individuals of the same species being larger than competition between individuals of different species. Competition between individuals of the same species must be large enough to keep any species from taking over and outcompeting all other species in the community. However, more recent work has highlighted the role of natural pathogens. Stable coexistence of many species may be favored if individuals of one species cannot live in close proximity to each other due to disease.

Plant Pathogens and Biodiversity

View looking south from the canopy tower at the Gamboa Rainforest Resort over the confluence of the Panama Canal and the Chagres River near Gamboa, Panama.

For example, picture a crowded forest with many adult trees of the same species releasing wind-dispersed seeds (like the helicoptering seeds of a maple). Very few, if any, of the seeds that fall near to the adult trees will germinate and reach maturity. As you walk away from the clump of adult trees, you will begin to find more germinated seeds that reach maturity (Augspurger 1983). These seeds are farther from tough competitors of the same species (adult trees) and are away from the plant pathogens that may be living in the adult root system. In our hypothetical forest, the plant pathogens that feed on young maples are keeping maple from dominating the forest, allowing other species that aren’t affected by the pathogen to thrive; in this way, plant pathogens play a role in the maintenance of biodiversity.

Drivers of Biodiversity

Our guest this week, Tyler Schappe, studies interactions among plants and fungi in the Neotropical forests of Panama. Tyler is broadly interested in what drives the maintenance and diversity of fungal communities, and how this, in turn, can affect tree communities. Tyler spent the summer of 2015 collecting 75 soil cores from three forest plots in Panama. Using DNA sequencing with universal genetic markers, he was then able to identify the fungi within the soil cores to species and functional group (decomposers, pathogens, plant mutualists, etc.). So far, Tyler has found that tree communities and soil nutrients affect the composition and diversity of fungal guilds differently. As expected, guilds that form mutualistic relationships with trees are more strongly correlated with plant communities. Interestingly, soil properties influence the species composition of all fungal guilds, including plant pathogens, pointing to the mediating role of soils as an abiotic filter. Overall, Tyler’s results, along with other research, show that soil fungal communities are an integral component of the plant-soil relationship since they are driven by, and can affect, both. Together, plants, soil, and fungi form a tightly connected three-way relationship, and wanting to understand one of them means having to study all three together.

Tyler’s work with fungal communities in Panama sheds light on belowground interactions and their implications for plant ecology. His research is one piece of evidence that may help us to understand why there are so many plant species, how they coexist, and why some species are common and some are rare. Are plant pathogens significant contributors to species richness and biodiversity? If so, what modulates plant pathogens, and how can that indirectly affect tree communities? To find out more about Tyler’s work check out these two sources from the Journal of Ecology and Science.

Spend sugar to make sugar

Stand of bur oak trees in a remnant oak savanna at Pheasant Branch Conservancy near Middleton, WI in early winter.

At a young age, Tyler began to realize how connected the world was and how plants and animals function in an ecosystem. The functioning of organisms and of ecosystems came into focus for him while in college at University of Wisconsin-Madison. He took a course in plant ecology from Dr. Tom Givnish who described plants in terms of economic trade-offs. For example, energy invested by plants in vertical growth cannot be invested in defense or reproduction; different allocations of resources can be more or less advantageous in different environments. Tyler decided to pursue graduate school at Oregon State while completing a fellowship with the Smithsonian Tropical Research Institute in Panama, where he met his current advisor, Andy Jones.

Tyler is defending his Master’s thesis August, 29 2017!  We are glad he can make time to talk with us on Inspiration Dissemination this Sunday August, 13 at 7 pm. Not a local listener? Stream the show live!

Ways and Means: Attitudes Toward Methods of Restoring American Chestnut Trees

“The Christmas Song” or “Chestnuts Roasting on an Open Fire” by Bob Wells and Mel Tormé is an iconic song in American culture, but most Americans will never experience a chestnut roast (at least not with American chestnuts).

A mighty blight

The American chestnut was a widespread North American native tree that covered nearly 200,000 miles of Appalachian forest. In 1904, the American chestnut trees in the Bronx Zoo were dying from a then unknown disease, Chestnut Blight. In the next forty years, Chestnut Blight spread across the estimated 4 billion American chestnut trees. Now American Chestnut trees are seen only as giant stumps, juveniles never reaching maturity, and rarely, adult fruit-bearing trees.

Since the decline of the American chestnut, Appalachian forests have changed. Chestnuts have been replaced by oaks, and it is likely that many organisms that relied on the chestnut trees for food or shelter have had to adapt to new conditions or have been displaced. The loss of the chestnut also led to the loss of financial income for many Appalachian people. In addition to chestnuts as a food source, the American chestnut provided decay resistant timber and tannins for tanning hide. The American chestnut and its decline is remembered through oral and written history. Members of older generations from Appalachia tell stories of enormous trees and later forests of white wooden chestnut skeletons.

Restoring the chestnut

Josh skiing in the mountains of Big Sky, Montana.

The restoration of the chestnut is an active project that faces many challenges. First, few Americans have seen an American chestnut tree, and few are familiar with their decline via Chestnut Blight. Since the restoration of the American chestnut would require policy changes and action across 200,000 miles, spanning multiple state governments, it is necessary to assess the extent the public might disfavor or favor this restoration. Our guest this week,Josh Petit from Forest Ecosystems and Society, is seeking to understand the attitudes of Americans toward the chestnut restoration. In particular, Josh is surveying a sample of the US population to compare attitudes toward a controversial method of chestnut restoration,  the use of genetic engineering.

Ways and Means

You may be familiar with genetic engineering to modify the genome of an organism to achieve a specific goal. Many of the crops we eat have in some way been modified to aid harvest, growth, and/or resistance to pests and disease. The methods for restoring the American chestnut are:

  • Selective breeding with related, blight-resistant Asian chestnuts
  • Modifying the genome of American chestnuts with Asian or other related chestnut genes (cisgenics)
  • Modifying the genome of American chestnuts with foreign genes or genes from wheat (transgenics)

Josh conducting research during a study abroad program in tropical North Queensland, Australia.

It is important to assess the attitudes of the public to transgenics because the introduction of  genes from wheat has been the most successful method at enhancing resistance toward chestnut blight. Recently, negative media has led to the misunderstanding that genetically modified organisms (GMOs) have adverse effects on consumers (humans) and ecosystems. However, these claims are not based in sound science and have been refuted. Although GMOs are being supported as alternatives to crop and forest species extinction, ultimately chestnut restoration relies on majority vote in favor or against a specific strategy. Thus, assessing attitudes toward restoration methods is tantamount to restoration efforts.

The Guy for the Job

A native of Ohio, Josh Petit attended Xavier University and majored in Political Science. He credits a Semester at Sea for broadening his world view and exposing him to different cultures. He learned that culture is important in all aspects of daily life. In retrospect, perhaps it is no surprise that he is currently studying an iconic tree and how culture has driven attitudes toward its restoration.

Josh participating in a Fijian traditional village celebration and homestay–taking turns playing guitar.

Josh became interested in ecology, biology, and the interface of the two with humans while working for Q4 International Marketing an ecotourism company in Panama. This lead him to pursue a Master’s in Natural Resources with a marine ecology focus from Virginia Tech. However, his most recent work withOregon Parks and Recreation Department lead him to pursue a PhD at Oregon State University. With the State Parks, Josh conducted surveys in Oregon Parks and sought to connect behavior, impacts, and social science to ecology and recreation. Now at Oregon State University, Josh is working with Mark Needham andGlenn Howe to understand the drivers of attitudes toward using biotechnologies for restoring American chestnut trees.

Hear more about Josh’s research and his journey to now this week on Inspiration Dissemination. Tune in to KBVR Corvallis 88.7FM on Sunday July, 30 at 7 pm, or live stream the show.

Project CHOMPIN: Parrotfish, nutrients, and the coral microbiome

CHOMPIN comic.

Ecology is the study of the relationships among organisms and the relationships of organisms to their physical surroundings. The interactions of organisms can be described as a complex web with many junctions or relationships, and a single ecologist may focus on one or many relationships in a community or ecosystem. Our guest this week, Rebecca (Becca) Maher PhD student in the Department of Microbiology, is interested in the effect of environmental stressors on the coral microbiome. Let’s break this down by interaction:

  • Beneficial algae, bacteria, and viruses interact with coral by living in coral tissue and forming the coral microbiome
  • Corals interact with other organisms in the coral reef ecosystem, such as parrot fish
  • Corals are affected by their surrounding environment: water temperature, water nutrients, and pollution

Becca at the Newport aquarium for Scientific Diver Training through Oregon State University.

You may be familiar with coral bleaching and coral reef decline from our past episodes. Corals form a mutualistic relationship (both organisms benefit) with algae, where algae take shelter within coral tissue and provide the coral with food from photosynthesis. It is well known that high temperatures lead to coral bleaching, or a shift in the coral microbiome resulting from the loss of beneficial algae that live within the coral. Coral bleaching is often fatal.

Becca is interested in other aspects of the coral microbiome, such as differences in the symbiotic bacterial communities brought about by nutrient enrichment from agricultural run-off and overfishing. Do corals in nutrient rich water have a different microbiome than corals in nutrient poor water? Do corals in highly fished areas have a different microbiome than corals in fish-rich areas? In overfished areas, predatory fish (e.g. parrotfish) may bite coral (hence Project CHOMPIN), and so how does the coral microbiome respond after wounding by parrotfish?

Becca diving at the Flower Garden Banks National Marine Sanctuary in the Northwest Gulf of Mexico for her undergraduate thesis at Rice University.

These questions are relevant for our knowledge of environmental factors that threaten coral reef ecosystems. Corals are in decline globally and with them are the high diversity of marine species that gain shelter and substrate from the coral reef. The information gained from Becca’s research may be informative for policy makers concerned with agricultural practices near marine areas and fishing regulations.  Rebecca is traveling to Morrea, French Polynesia this August to set up her field and laboratory experiments at the Gump Biological Research Station.

This upcoming trip is highly anticipated for Becca, who has been pursuing research in marine ecosystems since her time at Rice University. After working with her undergraduate mentor Adrienne Correa at Rice, Becca’s general focus on Ecology shifted to a focus on Marine Ecology. For Becca, her project at Oregon State in the Vega Thurber Lab is a harmonious mix of field work, high-level experimental design, bioinformatics, and statistics—a nice capstone for a Marine Ecologist with aspirations for future research.

Hear more about Becca’s work with corals the Sunday at 7 PM on KBVR Corvallis 88.7FM. Not a local listener? Stream our broadcast live.

Beetle-Seq: Inferring the Phylogeny of Clivinini

We humans are far outnumbered by organisms that are much smaller and “less complex” than ourselves. The cartoon above depicts representatives of major groups of organisms, and each organism is drawn such that its size reflects the number of species contained within its group. The bird, the fish, and the trees look as expected, but you may notice the enormous beetle. No, beetles are not generally larger than trees or elephants, but there are more species of beetles than any other group of organisms. Beetles are a wonderful representative of the biodiversity of the earth because they can be found in almost every terrestrial and non-marine aquatic environment!

Examples of carabid beetles of the tribe Clivinini (top row; photos with ‘HG’ – Henri Goulet, otherwise – David Maddison). Male genitalia of a clivinine species, Ardistomis obliquata, with possible ‘copulatory weapons’ (right) and several examples of clivinine female genitalia (bottom row) modified from Zookeys 2012;(210):19-67 shared under CC BY 3.0.

Our guest this week, Antonio Gomez from the Department of Integrative Biology, studies a group of beetles called clivinines (pronounced kliv-i-nīnz) which has 1,200 species, and potentially more that have yet to be discovered. Antonio is also particularly interested in the morphological diversity and evolution of clivinine beetle sperm. Antonio wants to know: What is the evolutionary history of clivinine beetles? What is the pattern of morphological diversity of sperm in clivinine beetles, and how are sperm traits evolving? The objective is to collect beetles, study their form, sequence their DNA, and understand their diversification.

Several examples of sperm conjugates (cases where two or more sperm are physically joined and travel together) in carabid beetles. Conjugation is considered rare, but in carabid beetles, it’s the rule and not the exception to it. In many carabids, sperm leave the testis but do not individualize. Instead, they remain together and swim as a team.

This is no small task, but Antonio is well equipped with microscopes to dissect and describe beetle anatomy, a brain geared to pattern recognition, and some fresh tools for genome sequencing. All of this is used to build an evolutionary tree for beetles. This is kind of like a family tree, but with species instead of siblings or cousins. Antonio and other students in the lab of David Maddison are adding knowledge to the vastness of the beetle unknown, bit by bit, antenna by antenna, gene by gene.

Antonio Gomez collecting beetles near a really bright light (a mercury vapor light trap) near Patagonia, Arizona.

Like many of our graduate students at Oregon State, a group of great mentors can make all the difference. Before working with Dr. Kelly Miller at University of New Mexico, he never knew beetle phylogenetics meant exploring exotic locations around the world to collect and potentially discover new species. As an undergraduate, Antonio even named a species of water beetle, Prionohydrus marc, after the undergraduate research program that go him started as a beetle systematist, the Minority Access to Research Careers (MARC) program. Pretty amazing. That was not his first or last research project with insects before he joined ranks at Oregon State, he also was participated in a Research Experience for Undergraduate program at the California Academy of Sciences and completed a Master’s at University of Arizona. Now he has ample experience working with beetles and is maybe a little overwhelmed but still excited by the unknown beetle tree of life. Next on his list of questions: did the ancestor of all clivinines likely have sperm conjugation?

You’ll have to tune in on Sunday April, 16 at 7 pm to hear more about that evolutionary arms race!
Not in Corvallis? No sweat! Stream the show live.

Can’t get enough? Follow this link to learn about Stygoprous oregonensis, a blind subterranean diving beetle that had not been seen in 30 years. Recently, a team of researchers that included Antonio Gomez reported the discovery of more specimens, which allowed them to place Stygoporus in an evolutionary tree.

A very Hungry Caterpillar, a very Tenacious Scientist

Tyria jacobaeae (cinnabar moth) caterpillars chowing down on Senecio triangularis at Marys Peak summer 2014

Tyria jacobaeae (cinnabar moth) adult Photographer: Eric Coombs

 

 

 

 

 

 

 

 

 

Our guest this week is Madison Rodman who recently finished her Master’s degree in Botany and Plant Pathology. Growing up as the daughter of crime lab scientist and an ecologist in North Dakota, Madison told us that there was not a singular moment when she knew she wanted to do science; she always loved the outdoors. It is no surprise that Madison is a go-getter and a very organized scientist herself, but her science story is less than typical. Madison’s first research experience involved hiking through the jungles of Thailand surveying for tigers! While wildly adventurous, this trip taught Madison that field work is not all rainbows and tiger stripes, but that there are venomous snakes in the jungle and tigers are good at hiding. What drew Madison to this field trip was the opportunity to see the organism in its habitat, but she also realized that all the lovely jungle plants were hiding in plain sight and waiting to be surveyed as well.

Madison Rodman poses with her research organism Senecio triangularis summer 2016

Upon returning to Minneapolis to continue her undergraduate studies at the University of Minnesota, Madison focused on Plant Biology and realized that plant-insect interactions were something that interested her. She applied for a Research Experience for Undergraduates (REU) at the University of Michigan, and spent the summer investigating the impact of atmospheric CO2 levels on plant chemistry and how changes in leaf defense chemistry affects herbivores. This was the pièce de résistance of a science project combining: whole organism science, plant-insect interactions, and climate change biology. Things were really coming together for Madison, and she knew she wanted to go on to graduate school and continue studying plant-insect interactions.

Manipulative experiment in action near Big Lake summer 2015

 

She did just that, and much much more, at Oregon State. Madison defended her Master’s thesis this winter, through which she studied the risk of a biocontrol agent, the cinnabar moth, on a native plant, Senecio triangularis, or arrow-leaf groundsel. These biocontrol caterpillars, will chomp the European tansy ragwort, an invasive weed, to the ground and look pretty cute doing it, but in some parts of Oregon they have recently switched to feeding on the native arrow-leaf groundsel. The good news: the tansy buffet is in low supply; the bad news: arrow-leaf groundsel is on the menu. How risky is the annual feeding of cinnabar moth caterpillars on arrow-leaf groundsel populations? Can caterpillar feeding have negative effects on the reproduction and survival of arrow-leaf groundsel? Both the arrow-leaf groundsel and the cinnabar moth are here to stay, but this native plant might be in trouble as annual temperatures continue to rise. You’ll have to tune in to hear more about the cinnabar moth and Madison’s field work in the high Cascades and Coast Range of Oregon. We promise it is all rainbows and moths…

Madison in her native habitat near Mount Hood summer 2016

Also at Oregon State, Madison has also been able to practice and boost her teaching skills through the Graduate Certificate in College and University Teaching (GCCUT) program. She has always loved communicating science, from being an undergraduate teaching assistant at U of MN to intern at Wind Cave National Park. Madison hopes to stay involved in teaching and community outreach after grad school when she relocates to Minnesota. We’re so excited to present her perspective on graduate school and share her science story.

Tune in to KBVR Corvallis 88.7FM this Sunday February, 5 at 7 pm PST to hear Madison’s story and learn about plant-insect interactions. You will not want to miss her take on graduate school, biocontrol, and beyond.

Not a local listener? Don’t fret, you can stream this episode live at www.kbvr.com/listen.

Inspiration Dissemination is happy to announce its addition to the KBVR archive as a podcast! Listen to this episode whenever and where ever you have internet access. Link TBA.

Magical Mushrooms, Mischievous Molds

Panorama of the whitebark pine seedling at the Dorena Genetic Resource Center (USFS)

Did you know that whitebark pine is the highest elevation tree here in the Pacific Northwest? If you have driven the Rim Road of Crater Lake National Park, you may have noticed a huge gnarly tree lovingly known by few as the “Grandmother” whitebark pine. These trees withstand harsh winds and cold temperatures, giving them a krummholz or “crooked wood” appearance. Some grow nearly horizontal.

Zolton’s favorite whitebark pine at the rim of Crater Lake

As one of the few tree species that grow at high elevations, whitebark pine acts as an ecosystem foundation species, making it possible for other plants, fungi, and animals to utilize higher elevation environments. Growing together, a population of whitebark pines form ecological islands and promote biodiversity in subalpine areas. For example, the Clark’s Nutcracker and whitebark pine have been coevolving for eons. The Clark’s Nutcracker is the only bird that can break open the pine cones of whitebark pine. While the bird eats some of the seeds, it also cashes them and can disperse the seeds many miles away. Other species such as rodents and bears eat the seeds as well.

Much more research is needed to fully understand the ecological importance of whitebark pine in its characteristic ecosystem. However, recently whitebark pine research is focused on another interaction, that of whitebark pine with an invasive plant pathogen, white pine blister rust. Since the 1900s, this pathogen has dramatically reduced populations of whitebark pine and other 5-needle pines of North America. This means that whitebark pine populations and the biodiversity islands it forms at high elevations are in trouble.

Zolton with his experimental seedlings at Dorena.

Fortunately, some populations show natural resistance to the pathogen, and our guest, Zolton Bair from the department of Botany and Plant Pathology, is comparing the transcriptomes, the collection of genes expressed as RNA, of resistant and susceptible trees to understand tree defense against white pine blister rust. Be on the lookout for his dissertation defense this year!

As a teenager, Zolton loved collecting and identifying mushrooms. Through a class called magical mushrooms, mischievous molds he realized that fungi are very important to humans as food, medicine, and can be problematic for farmers. He became interested in plant pathology after conducting undergraduate research in a mycology lab that focused on the spread of fungal spores between agricultural fields.

Experimental plot: Keep off!

You do not want to miss this week’s episode of Inspiration Dissemination with our guest Zolton Bair. Tune into KBVR Corvallis 88.7 FM this Sunday January, 22 at 7 pm to hear about Zolton’s journey from barefoot mushroom hunting in Virginia to studying plant pathology here at Oregon State, and we promise you won’t be disappointed to learn more about the awesome tree story of whitebark pine.

Not a local listener? Follow this link to stream the show live.

Blood Quantum: A Pass-fail Exam With No Questions

“What are you?” is a common question asked in the United States. Few people when asked say, “American,” simply because they might be of European descent. No matter how recently their ancestors migrated to the United States, 200 years ago, 100 years ago, some European Americans would still say, “Italian,” “English”, or “German.” This question of ancestry now becomes a fun conversation about history and ties to peoples an ocean away.

For American Indians this question carries much more meaning, and “What are you?” becomes a loaded question. American Indians have much more, “American,” blood purity than those of us whose families have lived here for a century or two, but instead of simply stating, “American Indian,” they carry identification cards that list their blood quantum for a particular tribe.

The picture belongs to Marty Two Bulls Sr. Our source.

The picture belongs to Marty Two Bulls Sr.
Our source.

Blood Quantum is the practice of quantifying purity of blood as a measure of tribal membership for American Indians. This form of assessment was first used for the Dawes Allotment Act of 1887 which required tribal members to prove that they had one half or more tribal blood purity to be legally recognized as an Indian; the federal standard has since been lowered to one quarter blood quantum. Indigenous people receive benefits of health and education among other things, and blood quantum is a tool for the federal government and for the tribes to decide who can claim these benefits. You may not realize that blood quantum is an ever-diminishing characteristic due to colonization and assimilation. Over time tribes become more and more intra-related and marriage more and more challenging. Thus, the responsibility of the government to native tribal peoples continues to decrease. Ask yourself: Is this by design? In some ways blood quantum protects tribes and the government from supporting people who fraudulently claim American Indian rights, but blood quantum also fractionates communities and can be used as a tool for lateral oppression.

How do you assess your membership to a particular culture? Lineage? Language? Participation in cultural practices? Unfortunately, at present lineage is all that matters for tribal membership. Our guest this week, Max Sage, Masters student in the department of Applied Anthropology, is interested in how American Indians respond to these and other questions about blood quantum. He is investigating their specific knowledge about blood quantum and how blood quantum has shaped their identity and their tribal experience.

For Max, himself a member of the Oneida tribe, these questions have personal significance, and he has been aware of blood quantum since his childhood. “How much native are you?” is a common question. He can precisely answer this, but Max wants to move away from blood quantum. For Max, tribal membership is more than blood, it is support for culture and preservation of culture throughout life. Max, like many American Indians, now face hard choices when it comes to growing their culture. For example, who to love comes with heavy consequences of blood quantum and the membership of his future family in his tribe. Many American Indians across the USA face similar choices: assimilate or isolate. Disenrollment is also occurring across tribes, and blood is called into question before tribal participation.

Max’s research is his life, and his work to illuminate how people identify as American Indian is deeply rooted in his personal experience. He is driven to help grow Indigenous cultures in a meaningful way, and his own ties to his culture motivate his current exploration. For Max, this task doesn’t stop at OSU. Max hopes to continue his work by pursuing a PhD and JD in Native American Policy at the University of Arizona where he will continue to be an ally to all Indigenous peoples.

Tune in to hear our conversation with Max Sage Sunday November, 6 at 7 pm on 88.7 FM KBVR Corvallis or stream the show live.

Safety is No Accident

It is no accident that traffic signs are painted with reflective paint to increase visibility at night. It is no accident that some pedestrian crossings in Corvallis are equipped with lighted signals that make noise. And, it is no accident that colored bike lanes are being introduced in Portland to increase driver awareness of cyclists.

Masoud presenting at Cookies and Clubs event as the Vice President of OSU ITE student chapter, Corvallis, Sept. 2016.

Masoud presenting at Cookies and Clubs event as the Vice President of OSU ITE student chapter, Corvallis, Sept. 2016.

But, accidents happen. The city of Portland anticipates that 25% of all daily trips will be accomplished via bicycle by the year 2030, and as bicycle transportation grows in popularity nationally, bicycle fatalities are also on the rise. Recently, the Pacific Northwest Transportation Consortium (PacTrans) teamed up with a group of researchers from Oregon State University to examine the interaction between cyclists and truck motorists in downtown areas. Cyclists are very vulnerable to trucks entering the bicycle exclusive lane, and truck drivers have large blind spots and great inertia. What does a bicyclist do when a truck is in the bike lane? How does a bicyclist react to different configurations of traffic control devices, why do bicycle-truck accidents happen, and what should be done to reduce bicycle fatalities? These are the questions being investigated by PhD student, Masoud Ghodrat Abadi, with the Hurwitz Research Program.

Masoud presenting his research on traffic signal control at Engineering Graduate Research Expo, Portland, Mar. 2016.

Masoud presenting his research on traffic signal control at Engineering Graduate Research Expo, Portland, Mar. 2016.

Did you know Oregon State University has a cycling and driving simulation lab? We do, and we are one of six in the world! In the lab, a cyclist mounts a stationary bike, dons a pair of goggles that track eye movement, and pedals the bike in front of a screen that provides a 180 degree field of vision. The screen shows a virtual world where the cyclist encounters hazards, and their reactions are monitored. For automobile drivers, the experience is the same except of course the driver sits in a car that tilts as they navigate through the virtual reality. The whole time, Masoud is collecting data, and analyzing the interaction between drivers and cyclists.

Masoud presenting his research at PacTrans PhD Student Research Symposium, Seattle, Aug. 2016.

Masoud presenting his research at PacTrans PhD Student Research Symposium, Seattle, Aug. 2016.

Although the literal definition of Transportation Engineering is, “the application of technology and scientific principles to the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, efficient, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods.” It is simply the science of making transportation safe and saving lives. We humans need flashing lights, clear signs, and noises to help us avoid accidents. We are not perfect. For Masoud, this intersection between the physics of traffic and human psychology is gripping. Growing up, Masoud always had a talent for math and physics. It was no surprise that he would eventually pursue Engineering. Later when he was earning his Master’s in Transportation Engineering, he found that his field combined his research interests and his fascination with human behavior. This fascination is also influenced and satisfied by his love for teaching. Masoud is constantly learning about effective teaching and how to improve student performance. Masoud comes from a family full of teachers and a nourishing atmosphere at home. For this reason, he decided to pursue a PhD in Transportation Engineering because he wants to become a university professor and “teach for life,” which is rather appropriate considering the research he is pursuing could saves lives.

Lastly, Masoud would tell you to wear a helmet and stop listing to music while you bike. Everyone can learn to be safe.

Please tune into 88.7 FM KBVR Corvallis this Sunday at 7 pm to hear more from Masoud Ghodrat Abadi. You can also stream the show live.

Religion and Spirituality at Work

Most adults spend the majority of their time at the workplace and organizing their lives through or around their occupations. While work is often portrayed as not personal or political, social science research continues to highlight how gender, race, and sexuality play an important role in organizing work and occupations. Recently, scholars are beginning to demonstrate that like gender, race, and sexuality, religion and spirituality are also deeply rooted in occupations and their organizations, the identities of workers, and the interactional dynamics at work. This week we ask, how does religion and spirituality shape work, and vice versa, and what do identities (gender, race, and sexuality) and inequalities have to do with it?

andres-lopez

Our guest this week, Andres Lazaro Lopez PhD student in Applied Anthropology, is interested in the interplay between religion/spirituality and intersecting identities (gender, race, class, and sexuality) at and around work, especially for queer professionals. Andres’ focus is on Lived Religion, which centers on people’s choices about their relationship with religious practices, the spiritual language and communities that help filter the meaning of the religions they engage with, and the actual daily uses that result from both. How do people bring religion to work? How do individuals and groups make spiritual meaning out of their work and workplaces? What makes a location, activity, or object sacred? This is based on the idea that religion and spirituality is not contained within or limited to activities within a church or its organizations.

Growing up with two older masculine heterosexual brothers, Andres learned about code switching at an early age – how to use language and behavior differently for varying groups and audiences. As a young person making sense of his queerness, the practice of code switching taught him how masculinity and sexuality can shape interactions. His background led to his Bachelor’s in Sociology from Xavier University in Cincinnati, Ohio. His senior thesis was an empirical analysis of how college-aged men felt restricted by their masculinity.

After a short break from academia, Andres earned a Master’s degree in sociology from the University of Missouri – Kansas City. This is when the topics of religion and masculinity became intertwined for Andres; he studied the largest men’s ministry organization in the U.S., asking why men would join an all-men’s religious ministry and what motivated them to be regular participants.

Andres’ life has certainly shaped his career path. Now in the Oregon State program of Applied Anthropology, Andres is truly forging his own path in the field by approaching the intersection between identities, culture, and inequalities, and how they affect the performance of gay men in and around professional work. Tune in Sunday September, 11 at 7 pm to hear more or stream the show live.

Can You Hear Me Now?

A mutation in the otoferlin gene causes inherited hearing impairment. The otoferlin gene codes for the massive otoferlin protein, which is in the part of the inner ear called the cochlea. Otoferlin is responsible encoding the sound and proposed to act as a calcium sensor for neurotransmission in inner hair cells of the cochlea. Murugesh Padmanarayana, PhD student in Biochemistry and Biophysics here at OSU, has been working on functional characterization of this protein in order to understand how it works and what it does to encode sound faithfully.

A photo of Murugesh in the lab.

A photo of Murugesh in the lab.

Why is it important to know the function of a protein and the functions of all of its parts? Different parts of proteins perform different tasks, and otoferlin’s most important parts are called C2 domains that bind calcium, lipids and other proteins. If there is a mutation in the otoferlin gene that affects the C2 domains, it abolishes neurotransmitter release and no sound will be detected. Murugesh has discovered that it is possible that only two functioning C2 domains are enough to rescue hearing. This is ground breaking because if only two parts are really necessary for hearing than proteins that look and act like otoferlin but are smaller may be able to restore hearing function to a person with inherited hearing impairment. Otoferlin at its complete size with six C2 domains is far too big to be administered through gene therapy. Murugesh hopes that his research may lead to further development of this protein as a potential treatment for inherited hearing impairment.

Murugesh came from a small village called Bagoor in India. There he is one of the few people to have attempted to or succeeded at obtaining a graduate degree, but Murugesh was a good student and he pushed himself to go farther. He graduated with a bachelor’s in Pharmacy from Rajiv Gandhi University of Health Sciences in India. After college, Murugesh worked at a pharmaceutical company for two years where he decided to pursue a career in medicinal chemistry. Murugesh left India and earned a master’s in Drug Design and Biomedical Science from Edinburgh Napier University in the United Kingdom where he was first involved in research. After working for two years in the protein science department of Agilent Technologies, he decided he wanted to return to graduate school for a PhD.

In his spare time Murugesh loves three antidepressants: nature, reading, and biking.

In his spare time Murugesh loves three antidepressants: nature, reading, and biking.

Murugesh contacted professors from 15 schools, based on their positive reply he applied to 7 schools, and we are fortunate that he chose Oregon State University and the Biochemistry and Biophysics Department where he works with Dr. Colin Johnson. Murugesh will continue working in protein biochemistry or protein engineering after his time here at OSU.

We are so thrilled to have Murugesh on the show this weekend, and we are excited to talk to him about his research with protein otoferlin. Be sure to listen to KBVR Corvallis 88.7 FM at 7 pm on Sunday, August 21 to hear from Murugesh, or stream the show live.