Tag Archives: kinesiology

Work Your Body, Work Your Brain

Regular exercise can increase your muscle strength, decrease the risk of health complications like high blood pressure and diabetes, but most importantly it can do wonders for our happiness. This link between physical activity and psychological well-being is supported in the literature, but the people who can benefit the most — children in grade school and adults with mobility limitations — seem to be faced with many unnecessary hurdles. Our guest is Winston Kennedy, a 3rd year PhD student in the Kinesiology program and Adaptive Physical Activity option, was a practicing Physical Therapist when he noticed his patients with mobility limitations were trying to perform their rehabilitation exercises at home but they received inadequate support or guidance. It’s these barriers to successful rehabilitation that Winston is examining in his research project with the aim of making physical therapy more inclusive to any patient who could benefit.

Poster presentation of some of my Winston’s research; Determining Factors associated with Physical and Occupational Therapists’ attitudes Towards Disability

Physical therapy is often learned in the hospital and the patient is expected to perform those exercises at home; in fact, nearly 9 million Americans have some experience with physical therapy during their lifetimes but that number should actually be much bigger. Unfortunately, the benefits that patients can receive from PT is not well understood by primary care physicians so there is a discrepancy in the number of patients who receive a referral to visit the PT and those who can benefit. Adults who may benefit from PT could argue their case to their general practitioner and they may even be successful, but treatment gaps remain for children. Early in life during primary school “the majority of students with disabilities are placed in general education classrooms for 80% or more of their time in school“, which could exclude children from participating in exercise and bonding with their peers. The overlap between physical therapy, independent mobility, and mental health becomes obvious only when a wholistic approach to how a lived experience can extend from a person with physically unstable wrists or fingers into the frustration they may feel when using a small key to unlock a stiff door to your own home is painful or is downright too strenuous.

Winston at the Oregon state Championship Olympic weightlifting competition.

Winston continues to be a practicing physical therapist in Corvallis, but what brought him to Oregon State University from Florida was the seemingly obvious physical barriers that patients had in performing their rehabilitation, at home or in the gym, and the effect it had on his patients success. One practical design idea for gyms that can be more inclusive are structurally sound scaffolding near weight machines, or parallel bars for patients to practice walking without the fear of falling, the addition of a roaming human facilitator that can assist someone for a few minutes at a time can also have major positive benefits to generate spaces inclusive for people of all kinds of physical abilities. However, before he can help people in the physical therapy offices, he first needs to understand what the attitudes and perceptions of physical therapy are from primary care physicians who can refer patients. This is the first part of Winston’s project, but it won’t be his last.

Winston first became exposed to physical therapy after a shoulder injury in high school, although he wouldn’t pursue it professionally until he was in his senior year at Hampton University playing on the football team when his school counselor suggested PT could be a career option. Following knee surgeries that ended his football career, he made a hard swing to focus on schooling and PT school that eventually lead him to see the need from his patients. This gap in care, especially for those with disabilities, is what brought him to Oregon State and Sam Logan’s lab in the Kinesiology program. Listen in on Sunday January 26th at 7pm on 88.7FM, or live-streamed to learn more about Winston’s research. If you missed the live episode, you can listen to Winston’s interview on our Apple Podcast page.

GROWing Healthy Kids and Communities

Physical activity has many benefits for health and wellness. Physical activity can help us control our weight, reduce our risk of diseases including many cancers and type 2 diabetes, help to strengthen our bones and muscles, and improve our mental health. Yet despite the benefits, many don’t get the recommended amount of physical activity. Our guest this week, Evan Hilberg from the College of Public Health and Human Sciences and the Department of Kinesiology, is investigating factors that influence physical activity of children in rural communities. Research focused on physical activity in children disproportionally centers around children in urban communities. Children in rural communities may have different limitations to physical activity. For example, rural children are more likely to take the bus to school instead of walking and commutes may take up to two hours each way. This leaves little time for physical activity outside of school hours. With his advisors, John Schuna and Kathy Gunter, Evan is analyzing data collected as part of the Generating Rural Options for Weight- Healthy Kids and Communities (GROW HKC) to better understand when children are active during the school day and factors that might limit their physical activity.

Recess and Wellness

Evan taking blood samples for cholesterol and glucose testing at a Community Wellness Fair.

One area of interest for Evan and the GROW HKC project are the variables that may predict changes in Body Mass Index (BMI) over a three-year period. Through this longitudinal study that involves over 1000 rural Oregon elementary school children, Evan will identify correlates of BMI change such as physical activity levels, age, sex, teacher, and school. Additionally, Evan is analyzing data that will hopefully provide more insight into specifically what times during the school day children are active. By obtaining a classroom schedule from teachers and measuring activity with accelerometers and pedometers, Evan can infer if children are physically active during recess, P.E., classroom activity breaks, or other times during the school day. Finally, Evan’s data will examine the reliability of different objective measures of physical activity, such as pedometers and accelerometers. The ability to compare outputs from different devices is limited by changes in device hardware and software, as well as the ways in which data is processed within those devices. The examination of these devices may inform procedure for future physical activity research for children and adults to help comparability across different devices and different studies.

A School of Thought

A clear understanding of the factors effecting physical activity in rural school children will aid in structuring the school day to maximize each child’s opportunity to be physically active. Data generated through GROW HKC my reveal patterns that younger children are more active during unstructured play during recess, whereas older children prefer sports-focused activity in P.E.. This type of research could inform recommendations for state-mandated physical activity at schools such that school day structure and physical activity opportunities are tailored to the diverse needs of kids in rural communities.

Full Circle

Evan grew up as an active kid and selected a college where he could play baseball. He landed at Linfield College in McMinnville, Oregon where his interest in Exercise Science grew through volunteering in community health outreach and research with his advisor, Janet Peterson. Evan learned that his education went beyond the classroom through his interactions with the community. Evan decided to pursue graduate school and earned a Master’s degree in Exercise Physiology from Eastern Washington University. During his Master’s, Evan gained more experience with community and public health research as an AmeriCorps employee with Let’s Move, Cheney”, a local coalition inspired by Michelle Obama’s national campaign. Thereafter, Evan volunteered with the GROW HKC project, and applied to graduate school at Oregon State. Since beginning his doctoral studies with a concentration in physical activity and public health, Evan has completed a Master’s in Public Health in Biostatistics and maintains a full-time job as a Medical Policy Research Analyst with Cambia Health Solutions.

Tune in to 88.7 FM KBVR Corvallis this Sunday November, 12 at 7 pm to hear more about Evan’s research and background in Exercise Science. Click here to stream the show live.

You can download Evan’s iTunes Podcast Episode!

Evan at the California-Oregon border on a self-supported bike trip to San Francisco down the coast.

Studying skeletal muscle physiology to better understand diseases such as type II diabetes

Harrison in the lab.

Our guest this week on Inspiration Dissemination, Harrison Stierwalt a PhD student in Kinesiology, studies the cellular mechanisms of skeletal muscle physiology. Harrison and other members of the Translational Metabolism Research Laboratory, research the cause of skeletal muscle insulin resistance and how exercise acts against insulin resistance. In particular, Harrison currently studies the activity of a protein called Ras-related C3 botulinum toxin substrate 1, or more commonly known as Rac1. Rac1 plays an important role in the regulation of blood sugar in response to insulin being released from the pancreas following a meal. Insulin is a hormone that triggers the uptake of sugar from the blood stream into skeletal muscle cells where it can be stored or metabolized into energy. In states of insulin resistance, individuals still produce insulin, but eventually insulin resistance leads to chronically increased blood sugar levels. Insulin resistance puts individuals at predisposition for cardiovascular disease, cancer, and type II diabetes. Previous research has demonstrated decreased Rac1 activity in states of insulin resistance but the cause for its decreased activity is unknown.

Harrison working with the oxygraph doing high resolution respirometry (used to measure mitochondrial respiration).

Studying Rac1

The activation of Rac1 causes reorganization of cell components creating “highways” that allow other proteins such as glucose transport 4 or GLUT4 to relocate to the cell membrane and allow sugar from blood to enter skeletal muscle cells for processing. Consequently, Rac1 shows increased activity in response to insulin and exercise promoting the metabolism and storage of sugar in skeletal muscle. Harrison suspects that the dysfunction of Rac1 may play a large role in  insulin resistance, and his lab is looking to better understand the dysfunction of skeletal muscle physiology that may contribute to insulin resistance. To study insulin resistance, Harrison is currently comparing Rac1 activity in skeletal muscle cells and skeletal muscle tissue of lean and obese mice. Learn more about Rac1, GO TO ARTICLE.

Harrison has always been drawn to human health, and is particularly intrigued by how adaptable the human body is. He completed his undergraduate degree and Master’s in Exercise Science at Florida State University. After, he worked as a strength and conditioning coach, testing physical performance. While this work was challenging, Harrison decided to pursue a PhD so that he could ask his own research questions about human health and investigate cellular mechanisms therein.

Harrison encouraging a participant during an exercise test.

With a growing interest in metabolism and physiology, Harrison began looking for Kinesiology PhD programs. He discovered the work of his co-advisors, Sean Newsom and Matt Robinson. For Harrison, Oregon State is a good fit that encapsulates his interested: exercise science, molecular cellular biology, and human health. Harrison is starting the second year of his PhD in the College of Public Health and Human Sciences.

If you are interested in participating in human health research, visit the Newsom-Robinson lab webpage.

Tune in this Sunday September 24 at 7 PM to learn more about Harrison and his research with insulin resistance and sugar metabolism. Not a local listener? No sweat! Stream the show live!

You can also download Harrison’s iTunes Podcast Episode!

Mountain biking at Black Rock in Falls City, Oregon.

Harrison at the peak of South Sister, 2017.