Category Archives: Bioresource Research

Stream ecosystems and a changing climate

Examining the effect of climate change on stream ecosystems

Oak Creek near McDonald Dunn research lab. The salamander and trout in the experiments were collected along this stretch of creek.

As a first year Master’s student in the lab of Ivan Arismendi, Francisco Pickens studies how the changing, warming climate impacts animals inhabiting stream ecosystems. A major component of stream ecosystem health is rainfall. In examining and predicting the effects of climate change on rainfall, it is important to consider not only the amount of rainfall, but also the timing of rainfall. Although a stream may receive a consistent amount of rain, the duration of the rainy season is projected to shrink, leading to higher flows earlier in the year and a shift in the timing of the lowest water depth. Currently, low flow and peak summer temperature are separated by time. With the shortening and early arrival of the rainy season, it is more likely that low flow and peak summer temperature will coincide.

A curious trout in one of the experimental tanks.

Francisco is trying to determine how the convergence of these two events will impact the animals inhabiting streams. This is an important question because the animals found in streams are ectothermic, meaning that they rely on their surrounding environment to regulate their body temperature. Synchronization of the peak summer temperature with the lowest level of water flow could raise the temperature of the water, profoundly impacting the physiology of the animals living in these streams.

 

 

How to study animals in stream ecosystems?

Salamander in its terrestrial stage.

Using a simulated stream environment in a controlled lab setting, Francisco studies how temperature and low water depth impact the physiology and behavior of two abundant stream species – cutthroat trout and the pacific giant salamander. Francisco controls the water temperature and depth, with depth serving as a proxy for stream water level.

Blood glucose level serves as the experimental readout for assessing physiological stress because elevated blood glucose is an indicator of stress. Francisco also studies the animals’ behavior in response to changing conditions. Increased speed, distance traveled, and aggressiveness are all indicators of stress. Francisco analyzes their behavior by tracking their movement through video. Manual frame-by-frame video analysis is time consuming for a single researcher, but lends itself well to automation by computer. Francisco is in the process of implementing a computer vision-based tool to track the animals’ movement automatically.

The crew that assisted in helping collect the animals: From left to right: Chris Flora (undergraduate), Lauren Zatkos (Master’s student), Ivan Arismendi (PI).

Why OSU?

Originally from a small town in Washington state, Francisco grew up in a logging community near the woods. He knew he wanted to pursue a career involving wild animals and fishing, with the opportunity to work outside. Francisco came to OSU’s Department of Fisheries and Wildlife for his undergraduate studies. As an undergrad, Francisco had the opportunity to explore research through the NSF REU program while working on a project related to algae in the lab of Brooke Penaluna. After he finishes his Master’s degree at OSU, Francisco would like to continue working as a data scientist in a federal or state agency.

Tune in on Sunday, June 24th at 7pm PST on KBVR Corvallis 88.7 FM, or listen live at kbvr.com/listen.  Also, check us out on Apple Podcasts!

Oops that’s a mistake.. No, that’s a new detox pathway!

It’s graduation season and for those folks who think grad school isn’t for them, take a look at this week’s guest who is one of the first to participate in the 4+1 Bioresource Research program in the College of Agricultural Sciences allowing students to complete their undergraduate and graduate degrees in 5 years! Taylor Hughes is an Oregonian native who grew up testing the river through his backyard for organic pollutants that would eventually lead him to Oregon State University scholarship. Like most recent graduates, high school and college alike, he didn’t know exactly which career path to take. He was looking towards environmental sciences after a pivotal class in high school that forced him identify an ecological system and develop a method to test a hypothesis; essentially he was a scientist in the making!

Chasing giant Fall Chinook on the Umpqua River in my hometown

Chasing giant Fall Chinook on the Umpqua River in my hometown

Fast-forward through the pre-requisite classes, and four years at OSU, and Taylor is now a recent graduate of the Bioresource Research degree focusing on toxicology. The degree requires some research hours where he worked on a senior thesis focusing on how naturally produced bodily chemicals were influencing our bodies’ endocannabinoid receptors system that work to keep our internal functions stable. This was Taylor’s first exposure to the “-omics” branch of science, some common examples include genomics and metabolomics.

This research focuses on biomolecules of specific functions or from specific species, however the vast number of molecules produced by our biology leads to massive datasets that tend to be hypothesis generating research rather than hypothesis driven research. What does this mean for the rest of us? It leads to unintended discoveries, answers to questions we didn’t know we had. Now that Taylor has returned to OSU and focusing on lipidomics, he has found as a potentially new detoxification pathway that has previously been unknown!

Tune in on tonight, June 5th at 7PM on 88.7FM or online to listen to us talk to the Roseburg-native Taylor Hughes about new understandings in how our bodies can remove toxic by-products.

Competing at a BBQ Cook-off fundraiser that raises money for Doernbecker's Children's hospital

Competing at a BBQ Cook-off fundraiser that raises money for Doernbecker’s Children’s hospital