Category Archives: Molecular and Cell Biology

The Sweetest Genes

Tonight we have the pleasure of speaking to Natalia Salinas who comes all the way from South America to work on producing more (and delicious) strawberries! Think about how often you see strawberries in the grocery store, but strawberries typically only produce one harvest per year. Some of Natalia’s work focus on identifying if the seeds’ DNA have the perpetual flowering characteristic so there are more potential harvests throughout the year. Just as important as quantity is quality; a second aspect of Natalia’s work is searching DNA markers to try and predict the sugar content in strawberries.

Ideally growers would like many harvests and sweeter strawberries, so tune in tonight at 7PM Pacific time to 88.7FM KBVR Corvallis or stream the show live at to find out how Natalia can help your next milkshake be even more delicious!


Natalia is working to amplify the DNA sequences in strawberries to identify desirable traits.

Natalia is working to amplify the DNA sequences in strawberries to identify desirable traits.

The fruits of Natalia's labor!!! yum!

The fruits of Natalia’s labor. Yum!

Genomics on the Farm: Breeding A More Resistant Rice

Kalarata_black seed_27May2011_560x225

Photo courtesy the Jaiswal Lab

Tonight Noor Al-Bader of OSU’s Molecular and Cell Biology department joins us on the show to discuss her doctoral research concerning genomics and plant breeding.  Working in Dr. Pankaj Jaiswal’s lab, Noor deals with large data sets of genetic information concerning varieties of Rice and Chia. The goal of her study is to determine which genes relate to the expression of traits implicated in stress resistance and nutritional content. Often the varieties of these crops grown for their value to farmers are susceptible to environmental stressors such as high salinity in water, drought, and high temperatures. These environmental concerns unfortunately promise to be increasing concerns in many areas such crops are grown due to the increasing impact of climate change. Wild types are often hardier, and genetic studies of both types hold promise for producing a “happy medium” capable of producing high yield, nutritious rice and chia that is also highly prosperous under less than desirable environmental circumstances.  These new varieties are not produced via genetic modification in the lab, but bred on the farm, crossing strains generation after generation and recording the results with painstaking attention to detail- the old fashioned way. The contrast between the hands on work of horticulture and the hard science of genetics in the lab may seem a surprising pair, but in this case the genetics research is utilized to facilitate traditional methods of horticulture by simply speeding along a process that could normally take lifetimes. Just like in her research, Noor strives to have the best of both worlds.

Continue reading