Hungry, Hungry Microbes!

Today ocean acidification is one of the most significant threats to marine biodiversity in recorded human history. Caused primarily by excess carbon dioxide in the atmosphere, the decreasing pH of the world’s oceans is projected to reach a level at which a majority of coral reefs will die off by 2050. This would have global impacts on marine life; when it comes to maintaining total worldwide biodiversity, coral reefs are the most diverse and valuable ecosystems on the planet.

Unfortunately, there is reason to believe that ocean acidification might proceed at levels even faster than those predicted. Large resevoirs methane hydrates locked away in deep sea ice deposits under the ocean floor appear to be melting and releasing methane into the ocean and surrounding sediments due to the increasing temperature of the world’s oceans. If this process accelerates as waters continue to warm, then the gas escaping into the ocean and air might accelerate ocean acidification and other aspects of global climate change. That is, unless something– or someone– can stop it.

The area of the seafloor Scott studies lies several hundred to a few thousand meters below the surface–much too deep (and cold!) to dive down. Scott gets on a ship and works with a team of experienced technicians who use a crane to lift a device called a gravity corer off the ship deck and into the water, lowering it until it reaches the bottom, capturing and retrieving sediment.

The area of the seafloor Scott studies lies several hundred to a few thousand meters below the surface–much too deep (and cold!) to dive down. Scott gets on a ship and works with a team of experienced technicians who use a crane to lift a device called a gravity corer off the ship deck and into the water, lowering it until it reaches the bottom, capturing and retrieving sediment.

This is where methanotrophs and Scott Klasek come in. A 3rd year PhD student in Microbiology at Oregon State University, Scott works with his advisor in CEOAS Rick Colwell and with Marta Torres to study the single celled creatures that live in the deep sea floor and consume excess methane. Because of their importance in the carbon cycle, and their potential value in mitigating the negative effects of deep sea methane hydrate melting, these methanotrophs have become a valuable subject of study in the fight to manage the changes in our environment occurring that have been associated with anthropogenic climate change.

 

Here Scott is opening a pressure reactor to sample the sediment inside. Sediment cores retrieved form the ocean floor can be used for microbial DNA extraction and other geochemical measurements. Scott places sediment samples in these reactors and incubates them at the pressure and temperature they were collected at, adding different amounts of methane to them to see how the microbial communities and methane consumption change over weeks and months.

Here Scott is opening a pressure reactor to sample the sediment inside. Sediment cores retrieved form the ocean floor can be used for microbial DNA extraction and other geochemical measurements. Scott places sediment samples in these reactors and incubates them at the pressure and temperature they were collected at, adding different amounts of methane to them to see how the microbial communities and methane consumption change over weeks and months.

Most people don’t wake up one morning as a kid and say to themselves, “You know what I want to be when I grow up? Someone who studies methanotrophs and the threat of warming arctic waters.” Scott Klasek is no exception, in fact, he went into his undergraduate career at University of Wisconsin, Madison expecting to pursue an academic career path in pre med. To learn all about Scott’s research, and the twists and turns that led him to it, tune in this Sunday, April 10th, at 7pm to 88.7 KBVR FM or stream the show live!

 

 

Print Friendly, PDF & Email
This entry was posted in College of Earth Oceanic and Atmospheric Sciences, Geology, Microbiology, Uncategorized on by .

About Matt McConnell

Matt McConnell is from Midland, Michigan and received his undergraduate BS in Psychology and Philosophy at Central Michigan University. After graduating he spent several years in North Carolina. Most of this was at UNC working as a medical research lab assistant using mice as model organisms, but some of his work also involved cognitive research with Rhesus Macaques at a Duke University field site in Puerto Rico. Matt currently live in Corvallis, OR where he attends OSU as a graduate student in the History of Science master's program. He is taking Science Education as a related minor, with an emphasis in Free Choice Learning. His interests in History of Science and Science Education meet on the practice of Science Communication. Matt is currently co-host of the weekly radio show 'Inspiration Dissemination', in which graduate students discuss their personal journeys. Inspiration Dissemination is open to all graduate students and airs every Sunday evening at 7pm on 88.7 FM, KBVR Corvallis.