Glencora Borradaile

         Assistant Professor, School of Electrical Engineering and Computer Science, Oregon State University

December 3, 2013

Women in Theory Workshop: Call for Participation

via Lisa Zhang, Tal Rabin and Shubhangi Saraf:

The Women in Theory (WIT) Workshop is intended for graduate and undergraduate students in the area of theory of computer science. The workshop will feature technical talks and tutorials by senior and junior women in the field, as well as social events and activities. The motivation for the workshop is twofold. The first  goal is to deliver an invigorating educational program; the second is to bring together theory women students from different departments and foster a sense of kinship and camaraderie.

The 4th WIT workshop will take place at Google New York, May 28 – 30, 2014, in coordination with NYU and Princeton, right before ACM STOC 2014.

Confirmed Speakers: Lenore Blum (CMU), Julia Chuzhoy (TTI), Shafi Goldwasser (MIT), Orna Kupeferman (Hebrew U.), Katrina Ligett (Caltech), Rotem Oshman (U. Toronto), Vera Sos (Alfrd Rnyi Institute of Mathematics).

Important dates:
Application deadline:  January 20,  2014.
Notification of acceptance: February 10,  2014.
Workshop: May 28-30, 2014.

For more information see or contact  I attended WIT as a speaker in 2012 and had a wonderful time.  I wish it was something I could go back to every year!  I highly recommend you encourage your graduate students to go!

December 1, 2013

Mentoring junior faculty — what does your school do?

Filed under: Silent Glen Speaks @ 11:07 pm
Tags: ,

I’ve been charged (with the help of others) with formalizing our junior-faculty mentoring practices.  Rather than reinvent the wheel, I’ve been looking into what other universities do.  It’s a little bit of information overload.  For example, these sites provide a glut of information.  It would be more helpful for me to have case studies — examples of how mentoring is done in various contexts.  So, this is the open question: What does your department do?  What do you wish your department did?

November 7, 2013

Still hiring at OSU: 6 positions open this year

Filed under: Silent Glen Speaks @ 3:25 pm

Have I mentioned that we’re hiring?

The School of Electrical Engineering and Computer Science at Oregon State University invites applications for up to six full-time nine month tenure-track positions at the Assistant Professor level in Computer Science. Appointments may be made at the Associate or Full Professor level. We seek candidates with a commitment to quality teaching and with demonstrated research strengths in the areas of databases, software engineering, computer security, distributed systems, and computer vision.

There are also several openings in ECE and across the university (in case you have a two-body problem).  OSU’s enrollment has been growing, and so the faculty is growing with it.  A large, disproportionate portion of the growth has happened among incoming ECE and CS freshman, making our program (which has a fixed number of spots for juniors and seniors) more competitive.

Please spread the word and have your students and colleagues who want to live in paradise apply now.

November 1, 2013

TSP in 1-planar graphs

Filed under: Silent Glen Speaks @ 11:58 pm
Tags: , ,

I recently came back from a Dagstuhl I organized with Phil, Claire and Daniel on optimization algorithms for planar graphs.  I think I finally caught up for the week away and sat down this afternoon to think about research.  A problem suggested at the workshop was TSP in 1-planar graphs.  1-planar graphs are those graphs that can be drawn in the plane such that any edge has at most one other edge crossing it.

We have PTASes for TSP in bounded-genus graphs and in particular, these PTASes solve the subset TSP problem wherein you want to find the shortest tour that visits an input subset of vertices.  In general graphs, we would just take the metric completion (create the complete graph on that input subset of vertices where the weight of each edge is the length of the shortest path in the original graph) and solve the problem in that completion.  In planar graphs you could do this, but you would lose planarity.  The subset version is inherently interesting: if you are designing a delivery route, you definitely don’t want to visit every intersection in your region.

One would suppose that for 1-planar graphs, one would also want to give a PTAS for the subset version of the problem.  However, we can argue that isn’t the case.  Take a general graph G and consider any drawing of that graph in the plane.  An edge in this drawing will have any number of other edges crossing it, creating a sequence of crossing points along the edge.  Subdivide this edge by introducing a vertex between every consecutive crossing point and distribute the weight of the original edge among these new edges.  Now you have a 1-planar graph H.  If you could find a (1+eps)-approximate tour that visits the subset of vertices that correspond to the vertices of G, this ordering of vertices would correspond to a (1+eps)-approximate tour in G.  However, metric TSP is APX-hard.  So, there can’t be a PTAS for subset TSP in 1-planar graphs.

There might still be a PTAS for TSP (visiting all the vertices) in 1-planar graphs.  This doesn’t seem as interesting a problem though.

October 10, 2013

Color blindness considerations

I once had a student in class ask about the colors I was using on the whiteboard because he was color blind.  Since then, I have tried to be good about what colors I use when teaching.  Yesterday I was considering a low-tech alternative to clickers for the classroom: color cards!  However, now I have this color problem again.  I am too lazy to write the color of the card on the color cards I give to the class.  Surreptitiously, my partner was working on a figure for a new paper and referring to the chart below.  It provides a handy guideline for what colors look like to the colorblind and allows you to pick a subset of contrasting colors.  For more information, see the original research by Okabe and Ito.

June 10, 2013

The power of a sysadmin

Filed under: Silent Glen Speaks @ 3:39 pm

If you haven’t heard, you must have your head in the sand.  And if you haven’t seen the Guardian’s interview of Edward Snowdon, former NSA sysadmin, you should.  The actions of one sysadmin could greatly alter this country.

April 16, 2013

OSU announces new theoretical computer science group!

Filed under: Silent Glen Speaks @ 2:36 pm
Tags: ,

More exciting news from Oregon State!  Mike Rosulek will be joining our faculty in September.  Mike will bring some great complexity expertise to our department, but it is for his contributions to the fundamentals of cryptography that we recruited him to OSU.  We are building a security group at OSU, and Mike will lead things off.  Mike Rosulek graduated from UIUC in 2009 (yes, we are continuing our Illinois love-fest, it seems) and has since been on the faculty at the University of Montana where he has impressively continued and built his research program in secure computation and was awarded an NSF CAREER award.*

For Amir and I, this will mean the start of a real TCS group at OSU.  I see seminars and reading groups and generally a more lively theory atmosphere in our future here!

* I think that brings our departmental CAREER count to 21.  Given that we have 41 faculty, some of whom were never eligible for CAREER or equivalent, well, that impresses me!

April 8, 2013

Algorithms group doubles!

Filed under: Silent Glen Speaks @ 3:54 pm
Tags: ,

I am super happy to announce that Amir Nayyeri will be joining our faculty at Oregon State next year! Amir completed his Ph.D. with Jeff Erickson at UIUC and has been, for the past year, post-doc’ing at CMU with Gary Miller.  Amir is an expert in combinatorial optimization in computational topology and geometry.  Not only am I excited to work alongside Amir, but our Graphics and Machine Learning groups are also clamoring for more expertise in this area.

As you know, my only complaint about my professional life here has been loneliness.  Amir’s joining us will not only make a huge difference to me, but also my graduate students.  The two of us, I’m sure, will look forward to recruiting more TCS faculty to join us in the future.

Oh, it’s just so exciting!

January 20, 2013

What would Aaron Swartz want you to do?

I hadn’t checked my rss-feed reader since the winter break.  After the (deserved) attention of the life and untimely death of Aaron Swartz, I was interested in hearing the thoughts of my fellow computer scientists and so delved into the hundreds of unread articles in my rss-feed reader.  I was saddened to see that of the 19 personal blogs of computer scientists that I follow, there was only one mention of Aaron Swartz.

Also in the news: driverless cars.  Commentators inevitably rave at being able to read a book or watch a movie on the way to work or avoiding those DUII charges.  You know what has those features today?  Public transit.  And you know what doesn’t help to counter the real problem we are increasingly facing, that of overuse of limited resources?  Private, individual transportation.

More news: Facebook’s new searching feature, allowing Facebook users to access information that other Facebook users have donated to Facebook in exchange for having up to date information about their friends’ pets and drinking Odysseys.  There is a reason why Facebook needed to do this.  Facebook has carved out a segment of the web that is proprietary, that only they allow or disallow access to, based necessarily on their profit margin.

As computer science academics we are in a very powerful position.  We are trusted with shaping the next generation that will make very important decisions that will have far-reaching social implications.  Decisions like those over Facebook’s privacy defaults, motivating technology that enables autonomous private vehicles at the expense of the public interest, defining ownership of electronic media.  We make those decisions ourselves in our research; what we research, how we allow our research to be used.

Aaron Swartz cared about this and I think the world would be a better place if we all took action to advance his ideals.  We can do so by thinking about our actions.  How are you going to get to work today?  What are you going to do when you get there?  How are you going to choose which problems to focus on?  What will you allow your university tech transfer office to do with your IP?  What are you going to teach your students, implicitly and explicitly?

December 12, 2012

Classroom competition, TSP style

I changed up a few things in my undergraduate algorithms course this year.  I probably wouldn’t have if I wasn’t charged with designing an online version of the same course, one that would be static for at least three years, so far as I understand it.

One major thing that I changed was the assignment component.  This course has always (officially, by way of ABET-geared course learning objectives) included programming assignments.  Something that I abhored.  There was a post by Michael Mitzenmacher that changed my opinion (a bit) on this front. But mostly the thought that non-students would be looking closely at the various components of my course convinced me to take things a bit more seriously.

In previous iterations, I would completely separate “programming” assignments from “non-programming” assignments which is really terrible I know.  So this year I took a 180 and had 4 projects, each geared toward a major topic of the course with design, analysis and implementation/experimental analysis components.  Much better.  (Except for group unfairness woes as mentioned in my previous post.)

For the final project, I left things very open ended.  Design an algorithm to solve (2D Euclidean instances of) TSP.  In class, this allowed me to talk about verifiers (how else would I trust their solutions?), NP, give them a taste of a difficult problem, etc.  The assignment would culminate with a two-step competition. One to solve instances over a period of 24 hours and one to solve instances — live in class — in 4 minutes.  Before the assignment was even released I realized how competitive the students would get, requiring me (a.k.a. our amazing IT guy, Todd Shechter) to set up virtual machines for the competition to ensure fairness.  It was definitely convenient that DIMACS has a large set of instances available with optimal tour lengths listed.  Thank you, experimental algorithms community!

I have to say, I was impressed.  In a stroke of genius, I enforced a 2-page report limit so that I was actually able to easily discern their main techniques.  There were several equivalence classes of algorithms.  Two groups implemented Christofides’ algorithm, and, true to form, it got within 50% of optimal.  I tried hard to keep my impartiality in reading the reports on algorithms by biological metaphor and was pleased to see that my abhorrence played out in algorithms that didn’t do so well.  Several groups that did very well started with some sort of greedily generated tour and then made local changes that improved the tour.  I’d like to highlight the algorithm by Francis Vo and Soo Hyun Yoo, who were the only team to take advantage of the 2D Euclidean-ess of the problem and had an algorithm that outperformed all the others (almost all of the time), solved one of the 4-minute instances to optimality and added fuel to my “take advantage of the domain” banner I love to wave.  They started with a(n almost) convex hull of the points, iteratively added the remaining points to this tour greedily, and cleaned up with local search.  They even animated their algorithm to aid in design:

YouTube Direct

I will definitely make improvements (the in class competition was a little chaotic and not super interesting for the students who didn’t make into later rounds) but I enjoyed it and I think many of the students did.

« Previous PageNext Page »

© 2014 Glencora Borradaile   Powered by WordPress MU    Hosted by