GEOG 566






         Advanced spatial statistics and GIScience

April 17, 2019

Exercise 1: What is the spatial pattern of western hemlock dwarf mistletoe at the Wolf Rock reference stand?

For Exercise 1, I wanted to analyze the spatial pattern of western hemlock dwarf mistletoe infections in live western hemlocks on my 2.2 ha reference stand (Wolf Rock). This was without considering any attributes of the western hemlock trees themselves. Simply, what was the spatial pattern of infection?

To answer this I used the “Average Nearest Neighbor” tool in the Spatial Statistics toolbox in ArcMap. This tool calculates a z-score and a p-value from that z distribution. This is a commonly used method in dwarf mistletoe literature for assessing the clustering of infection centers. Also, the equations for this tool assume that points are free to locate wherever in space and that there are no barriers to spread.

ArcMap makes running these analyses very simple so I created a selection of infected trees (red dots), created a new feature, and then ran the tool. The p-value from my test was 0.097 and my Nearest Neighbor Index was 0.970, indicating that the spatial pattern of the infections are somewhat clustered with an alpha of 0.10.

Average Nearest Neighbor is a good test for analyzing whether or not a set of coordinates are clustered. The degree of clustering of may be harder to interpret as a lower p-value may not necessarily mean points are more clustered. Also I was unable to see where my clusters are, and if my intuitions match the analysis (see map). One other important consideration is the study area. Changes in analysis area can drastically change the result of your clustering analysis (i.e. larger study areas may make data look more clustered). Lastly, there was no option for edge correction. This may have skewed some of the clustering results along the edge of my study site and 2.2 ha is pretty small to be subsampled without losing a lot of my data.

Prologue

After confirming that my infections were clustered, I wanted to see if the pattern I saw in my map, was actually on the ground. I wanted to know, where are infected trees clustered with infected trees and where are uninfected trees clustered with uninfected trees? Again, this was without considering any attributes of the western hemlock trees themselves.

I used the “Optimized Hot Spot Analysis” tool in the Mapping Clusters toolbox to analyze the incidence of infection data (0 = absence, and 1 = presence). The Optimized Hot Spot Analysis tool can automatically aggregate incidence data that are normally not appropriate for hot spot analysis. It also calculates several other metrics for me that made analysis easy. I could take these automatically calculated metrics and alter them in a regular hot spot analysis if needed.

This map displays clustering that matched up closely with my intuitions from Map 1. On the left, the blue values show a cluster of uninfected trees that are closely clustered with other uninfected trees. The larger swath on the right show a cluster of trees that are closely clustered with other infected trees. In the middle a mix of uninfected trees and infected trees are mixed without displaying any significant clustering. Lastly, small clusters in the top left and bottom left of infected trees were identified. These clusters may be edge of larger clusters outside my stand, or lightly infected trees that are starting a new infection center. These results will be extremely valuable in informing my steps for Exercise 2 because I can assess the conditions of both patches and determine differences between the two. I can also determine if distance to the refugia impact the clustering of infection because it appears the infected cluster is closer to the fire refugia.

The hot spot analysis was extremely useful for analyzing and displaying the information I needed about the clustering and was very useful for building off of the Average Nearest Neighbor analysis.

Print Friendly, PDF & Email


No Comments »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a comment

You must be logged in to post a comment.

© 2019 GEOG 566   Powered by WordPress MU    Hosted by blogs.oregonstate.edu