GEMM Lab 2019: A Year in the Life

By Lisa Hildebrand, MSc student, OSU Department of Fisheries & Wildlife, Geospatial Ecology of Marine Megafauna Lab

Another year has come and gone, and with the final days of 2019 upon us, it is fulfilling to look back and summarize all of the achievements in the GEMM Lab this year. So, snuggle up with your favorite holiday drink and enjoy our recap of 2019!

We wrapped up two intense but rewarding gray whale field seasons this summer. Our project investigating the health of Pacific Coast Feeding Group (PCFG) gray whales through fecal hormone and body condition sampling in the context of ocean noise went into its fourth year, while the Port Orford project where we track whales and prey at a very fine-scale celebrated its wood anniversary (five years!). The dedication and hard work of lots of people to help us collect our data meant that we were able to add a considerable amount of samples to our growing gray whale datasets. Our trusty red RHIB Ruby zipped around the Pacific and enabled us to collect 58 fecal samples, fly the drone 102 times, undertake 105 GoPro drops and record 141 gray whale sightings. Our Newport crew was a mix of full-time GEMMers (Leigh, Todd, Dawn, Leila, Clara, and myself) as well as part-time summer GEMMers (Ale, Sharon, and Cassy). Further south in Port Orford, my team of undergraduate and high school students and I had an interesting field season. We only encountered four different individuals (Buttons, Glacier, Smudge, and Primavera), however saw them repeatedly throughout the month of August, resulting in as many as 15 tracklines for one individual. Furthermore, we collected 249 GoPro drops and 248 zooplankton net samples.  

The GEMM Lab’s fieldwork was not just restricted to gray whales. After last year’s successes aboard the NOAA ship Bell M. Shimada, Alexa and Dawn both boarded the ship again this year as marine mammal observers for the May and September cruises, respectively. They spied humpback, blue, sperm, and fin whales, as well as many dolphins and seabirds, adding to the GEMM Lab’s growing database of megafauna distribution off the Oregon coast. 

After winning the prestigious L’Oréal-UNESCO For Women in Science fellowship and the inaugural Louis Herman Scholarship, GEMM Lab grad Solène Derville lead her first research cruise aboard the French R/V Alis. She and her team conducted line transect surveys and micronekton/oceanographic sampling over several seamounts to try to solve the mystery of why humpbacks hang out there. We are also very excited to announce that Solène will be returning to the GEMM Lab as a post-doc in 2020! She will be creating distribution models of whales off the coast of Oregon with the data collected by Leigh during helicopter flights with the US Coast Guard. The primary aim of this work is to identify potential whale hotspots in an effort to avoid spatial overlap with fisheries gear and reduce entanglement risk.

Switching the focus from marine mammals to seabirds, Rachael has had an extremely busy year of field work all across the globe. She island-hopped from Midway (Hawaiian Northwest island) to the Falkland Islands in the first half of the year, and is currently overwintering on South Georgia, where she will be until end of February. Rachael is tracking albatross at all three locations by tagging individual birds to understand movements relative to fishing vessels and flight energetics. 

Besides several field efforts, the GEMM Lab was also busy disseminating our research and findings to various audiences. Our conferences kicked off in late February when Leigh and Rachael both flew to Kauai to present at the Pacific Seabird Group’s 46th Annual Meeting. In the spring, Leila, Dawn, Alexa, Dom, and myself drove to Seattle where the University of Washington hosted the Northwest Student Society of Marine Mammalogy chapter meeting and we all gave talks. Additionally, the Fisheries & Wildlife grad students in the lab also presented at the department’s annual Research Advances in Fisheries, Wildlife, and Ecology conference. Later in the year, Dom and I attended the State of the Coast conference where Dom was invited to participate in a panel about the holistic approaches to management in the nearshore while I presented a poster on preliminary findings of my Master’s thesis. Most recently, the entire GEMM Lab (bar Rachael) flew to Barcelona to present at the World Marine Mammal Conference (WMMC). 

Our science communication and outreach efforts were not just restricted to conferences though. Over the course of this year, the GEMM Lab supervised a total of 10 undergraduate and high school interns that assisted in a variety of ways (field and/or lab work, data analyses, independent projects) on a number of projects going on in the lab. Leigh and Dawn boarded the R/V Oceanus in the fall to co-lead a STEM research cruise aimed at providing high school students and teachers hands-on marine research. Dawn and I were guests on Inspiration Dissemination, a live radio show run by graduate students about graduate research going on at OSU. Our weekly blog, now in its fifth year, reached its highest viewership with a total of 14,814 views this year!

The GEMMers were once again prolific writers too! The 13 new publications in 10 scientific journals include contributions from Leigh (7), Rachael (6), Solène (2), Dawn (2), and Leila (1). Scroll down to the end of the post to see the list.

Academic milestones were also reached by several of us. Most notably and recently, Dom successfully defended his Master’s thesis this past week – congratulations Dom!! Unsurprisingly, he already has a job lined up starting in January as a Science Officer with the California Ocean Science Trust. Dom is the 6th GEMM Lab graduate, which after just five years of the GEMM Lab existing is a huge testament to Leigh as an advisor. Leila, who is in the 4th year of her PhD, anticipates finishing this coming March. We also had three successful research reviews – I met with my committee in late March to discuss my Master’s proposal, while Alexa and Dawn met with their committees in the summer to review their PhD proposals. All three reviews were fruitful and successful. And we want to highlight the success of a GEMM Lab grad, Florence Sullivan, who started a job in Maui with the Pacific Whale Foundation in September as a Research Analyst.

Leigh was recognized for her expertise in gray whale ecology and was appointed to the IUCN Western Gray Whale Advisory Panel (WGWAP). The western gray whales are a critically endangered population. At one point in the 1960s, the population was so scarce that they were believed to have been extinct. While this concern did not prove to be the case, the population still is not doing well, which is why the IUCN formed WGWAP to provide advice on the conservation of the western gray whales. Leigh was appointed to the panel this year and traveled to Switzerland and Russia for meetings. 

Clara aboard Ruby on her first day of gray whale field work in Oregon. Photo: Leigh Torres

We are excited about a new addition to the lab. Clara Bird started her MS in Wildlife Science in the Department of Fisheries & Wildlife this fall. She jumped straight into field work when she came in early September and got a taste of the Pacific. Clara joins us from the Duke University where she did her undergraduate degree and worked for the past year in their Marine Robotics and Remote Sensing Lab. Clara is digging into the gray whale drone footage collected over the last four field seasons and scrutinize them from a behavioral point of view. 

If you are reading this post, we would like to say that we really appreciate your support and interest in our work! We hope you will continue to join us on our journeys in 2020. Until then, happy holidays from the GEMM Lab!  

GEMM Lab at the beginning of June with some permanents GEMMs and some temporary summer GEMM helpers.

Barlow, D. R., M. Fournet, and F. Sharpe. 2019. Incorporating tides into the acoustic ecology of humpback whales. Marine Mammal Science 35:234-251.

Barlow, D. R., A. L. Pepper, and L. G. Torres. 2019. Skin deep: an assessment of New Zealand blue whale skin condition. Frontiers in Marine Science doi.org/10.3389/fmars.2019.00757.

Baylis, A. M. M., R. A. Orben, A. A. Arkhipkin, J. Barton, R. L. Brownell Jr., I. J. Staniland, and P. Brickle. 2019. Re-evaluating the population size of South American fur seals and conservation implications. Aquatic Conservation: Marine and Freshwater Ecosystems 29(11):1988-1995.

Baylis, A. M. M., M. Tierney, R. A. Orben, et al. 2019. Important at-sea areas of colonial breeding marine predators on the southern Patagonian Shelf. Scientific Reports 9:8517. 

Cockerham, S., B. Lee, R. A. Orben, R. M. Suryan, L. G. Torres, P. Warzybok, R. Bradley, J. Jahncke, H. S. Young, C. Ouverney, and S. A. Shaffer. 2019. Microbial biology of the western gull (Larus occidentalis). Microbial Ecology 78:665-676.

Derville, S., L. G. Torres, R. Albertson, O. Andrews, C. S. Baker, P. Carzon, R. Constantine, M. Donoghue, C. Dutheil, A. Gannier, M. Oremus, M. M. Poole, J. Robbins, and C. Garrigue. 2019. Whales in warming water: assessing breeding habitat diversity and adaptability in Oceania’s changing climate. Global Change Biology 25(4):1466-1481.

Derville, S., L. G. Torres, R. Dodémont, V. Perard, and C. Garrigue. 2019. From land and sea, long-term data reveal persistent humpback whale (Megaptera novaeangliae) breeding habitat in New Caledonia. Aquatic Conservation: Marine and Freshwater Ecosystems 29(10):1697-1711.

Fleischman, A. B., R. A. Orben, N. Kokubun, A. Will, R. Paredes, J. T. Ackerman, A. Takahashi, A. S. Kitaysky, and S. A. Shaffer. 2019. Wintering in the western Subantarctic Pacific increases mercury contamination of red-legged kittiwakes. Environmental Science & Technology 53(22):13398-13407.

Holdman, A. K., J. H. Haxel, H. Klinck, and L. G. Torres. 2019. Acoustic monitoring reveals the times and tides of harbor porpoise (Phocoena phocoena) distribution off central Oregon, U.S.A. Marine Mammal Science 35:164-186.

Kroeger, C., D. E. Crocker, D. R. Thompson, L. G. Torres, P. Sagar, and S. A. Shaffer. 2019. Variation in corticosterone levels in two species of breeding albatrosses with divergent life histories: responses to body condition and drivers of foraging behavior. Physiological and Biochemical Zoology 92(2):223:238.

Loredo, S. A., R. A. Orben, R. M. Suryan, D. E. Lyons, J. Adams, and S. W. Stephensen. 2019. Spatial and temporal diving behavior of non-breeding common murres during two summers of contrasting ocean conditions. Journal of Experimental Biology and Ecology 517:13-24.

Monteiro, F., L. S. Lemos, J. Fulgêncio de Moura, R. C. C. Rocha, I. Moreira, A. P. Di Beneditto, H. A. Kehrig, I. C. A. C. Bordon, S. Siciliano, T. D. Saint’Pierre, and R. A. Hauser-Davis. 2019. Subcellular metal distributions and metallothionein associations in rough-toothed dolphins (Steno bredanensis) from southeastern Brazil. Marine Pollution Bulletin 146:263-273.

Orben, R. A., A. B. Fleischman, A. L. Borker, W. Bridgeland, A. J. Gladics, J. Porquez, P. Sanzenbacher, S. W. Stephensen, R. Swift, M. W. McKown, and R. M. Suryan. 2019. Comparing imaging, acoustics, and radar to monitor Leach’s storm-petrel colonies. PeerJ 7:e6721.

Yates, K. L., …, L. G. Torres, et al. 2019. Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution 33(10):790-802.

Measuring dolphin response to Navy sonar

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

During the summer of 2017 I was an intern for Cascadia Research Collective (CRC), a non-profit organization based out of Olympia, Washington, that conducts research on marine mammal behavior, ecology, and population status along the western US coast and around Hawaii. My internship was primarily office-based and involved processing photographs of humpback and blue whales along the US west coast to add to CRC’s long-term photo-identification catalogues. However, I was asked to join a research project investigating the behavioral and physiological responses of four dolphin species in southern California (Fig. 1). The research project is a collaborative effort lead by Dr. Brandon Southall and involves researchers from CRC, Kelp Marine Research, NOAA’s Southwest Fisheries Science Center, and SR3. Since my internship with CRC, there have been three pilot efforts and one full field effort of this project, called the SOCAL Tagless Behavioral and Physiological Response Study (BPRS), and I have been a part of all of them.

The marine environment is stressed out, and so are the millions of flora and fauna that inhabit the global ocean. Humans are a big contributor to this stress. During the last few decades, we have produced more and more things that have ended up in the ocean, whether by choice or by chance. Plastic pollution has become a pervasive and persistent problem, especially after the discovery that when large plastic items are exposed to UV light and seawater they break down into smaller pieces, termed micro- and nano-plastics (Jambeck et al. 2015). Increased demand for oil and gas to supply a growing human population has led to much more marine oil and gas exploration and exploitation (World Ocean Review 2013). Since 1985, global container shipping has increased by approximately 10% annually (World Ocean Review 2010) and it is estimated that global freight demand will triple by 2050 (International Transport Forum 2019). The list of impacts is long. Our impact on the earth, of which the ocean makes up 71%, has been so extreme that expert groups suggest that a new geological epoch – the Anthropocene – needs to be declared to define the time that we now find ourselves in and the impact humanity is having on the environment (Lewis and Maslin 2015). While this term has not been officially recognized, it is irrefutable that humans have and continue to alter ecosystems, impacting the organisms within them. 

Noise is an impact often overlooked when thinking about anthropogenic effects in the marine environment, likely because we as humans do not hear much of what happens beneath the ocean surface. However, ocean noise is of particular concern for cetaceans as sound is their primary sense, both over long and short distances. Sound travels extremely efficiently underwater and therefore anthropogenic sounds can be propagated for thousands of kilometers or more (Weilgart 2007a). While it is widely agreed upon that anthropogenic noise is likely a significant stressor to cetaceans (Weilgart 2007b; Wright et al. 2007; Tyack 2008), very few studies have quantified their responses to noise to date. This knowledge gap is likely because behavioral and physiological responses to sound can be subtle, short-lived or slowly proliferate over time, hence making them hard to study. However, growing concern over this issue has resulted in more research into impacts of noise on marine mammals, including the GEMM Lab’s impacts of ocean noise on gray whales project.

The most extreme impact of sound exposure on marine mammals is death. Mass strandings of a few cetacean species have coincided in time and space with Navy sonar operations (Jepson et al. 2003; Fernández et al. 2005; Filadelfo et al. 2009). While fatal mass strandings of cetaceans are extremely troubling, they are a relatively rare occurrence. A cause for perhaps greater concern are sub-lethal changes in important behaviors such as feeding, social interactions, and avoidance of key habitat as a result of exposure to Navy sonar. All of these potential outcomes have raised interest within the U.S. Navy to better understand the responses of cetaceans to sonar. 

The SOCAL Tagless BPRS is just one of several studies that has been funded by the U.S. Office of Naval Research to improve our understanding of Navy sonar impact on cetaceans, in particular the sub-lethal effects described earlier. It builds upon knowledge and expertise gained from previous behavioral response studies led by Dr. Southall on a variety of marine mammal species, including beaked whales, baleen whales, and sperm whales. Those efforts included deploying tags on individual whales to obtain high-resolution movement and passive acoustic data paired with controlled exposure experiments (CEEs) during which simulated Navy mid-frequency active sonar (MFAS) or real Navy sonar were employed. Results from that multi-year effort have shown that for blue whales, responses generally only lasted for as long as the sound was active and highly dependent on exposure context such as behavioral state, prey availability and the horizontal distance between the sound source and the individual whale. Blue whales identified as feeding in shallow depths showed no changes in behavior, however over 50% of deep-feeding whales responded during CEEs (Southall et al. 2019).

The SOCAL Tagless BPRS, as the name implies, does not involve deploying tags on the animals. Tags were omitted from this study design because tags on dolphins have not had high success rates of staying on for a very long time. Furthermore, dolphins are social species that typically occur in groups and individuals within a group are likely to interact or react together when exposed to an external stimuli. Therefore, the project integrates established methods of quantifying dolphin behavior and physiology in a novel way to measure broad and fine-scale group and individual changes of dolphin behavior and physiology to simulated Navy MFAS or real Navy sonars using CEEs. 

During these tagless CEEs, a dolphin group is tracked from multiple platforms using several different tools. Kelp Marine Research is our on-shore team that spots workable groups (workable meaning that a group should be within range of all platforms and not moving too quickly so that they will leave this range during the CEE), tracks the group using a theodolite (just like I do for my Port Orford gray whale project), and does focal follows to record behavior of the group over a period of time. Ziphiid, one of CRC’s RHIBs, is tasked with deploying three passive acoustic sensors to record sounds emitted by the dolphins and to measure the intensity of the sound of the simulated Navy MFAS or the real Navy sonars. Musculus, the second CRC RHIB, has a dual-function during CEEs; it holds the custom vertical line array sound source, which emits the simulated Navy MFAS, and it is also the ‘biopsy boat’ tasked with obtaining biopsy samples of individuals within the dolphin group to measure potential changes in stress hormone levels. And last but not least, the Magician, the third vessel on the water, serves as ‘home-base’ for the project (Fig. 3). Quite literally it is where the research team eats and sleeps, but it is also the spotting vessel from which visual observations occur, and it is the launch pad for the unmanned aerial system (UAS) used to measure potential changes in group composure, spacing, and speed of travel.

The project involves a lot of moving parts and we are careful to conduct the research with explicit monitoring and mitigation requirements to ensure our work is carried out safely and ethically. These factors, as well as the fact that we are working with live, wild animals that we cannot ‘control’, are why three pilot efforts were necessary. Our first ‘official’ phase this past October was a success: in just eight days we conducted 11 CEEs. Six of these involved experimental sonar transmissions (two being from real Navy sonars dipped from hovering helicopters) and five were no-sonar controls that are critical to be able to experimentally associate sonar exposure with potential response. There are more phases to come in 2020 and 2021 and I look forward to continue working on such a collaborative project.

For more information on the project, you can visit Southall Environmental Associates project page, or read the blog posts written by Dr. Brandon Southall (this one or this one).

For anyone attending the World Marine Mammal Conference in Barcelona, Spain, there will be several talks related to this research:

  • Dr. Brandon Southall will be presenting on the Atlantic BRS on beaked whales and short-finned pilot whales on Wednesday, December 11 from 2:15 – 2:30 pm
  • Dr. Caroline Casey will be presenting on the experimental design and results of this SOCAL Tagless BPRS project on Wednesday, December 11 from 2:30 – 2:45 pm

All research is authorized under NMFS permits #16111, 19091, and 19116 as well as numerous Institutional Animal Care and Use Committee and other federal, state, and local authorizations. More information is available upon request from the project chief scientist at Brandon.Southall@sea-inc.net

Literature cited

Fernández, A., J. F. Edwards, F. Rodríguez, A. Espinosa de los Monteros, P. Herráez, P. Castro, J. R. Jaber, V. Martín, and M. Arbelo. 2005. “Gas and fat embolic syndrome” involving a mass stranding of beaked whales (Family Ziphiidae) exposed to anthropogenic sonar signals. Veterinary Pathology 42(4):446-457.

Filadelfo, R., J. Mintz, E. Michlovich, A. D’Amico, P. L. Tyack, and D. R. Ketten. 2009. Correlating military sonar use with beaked whale mass strandings: what do the historical data show? Aquatic Mammals 35(4):435-444.

International Transport Forum. 2019. Transport demand set to triple, but sector faces potential disruptions. Retrieved from: https://www.itf-oecd.org/transport-demand-set-triple-sector-faces-potential-disruptions

Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law. 2015. Plastic waste inputs from land into the ocean. Science 347(6223):768-771.

Jepson, P. D., M. Arbelo, R. Deaville, I A. P. Patterson, P. Castro, J. R. Baker, E. Degollada, H. M. Ross, P. Herráez, A. M. Pocknell, F. Rodríguez, F. E. Howie II, A. Espinosa, R. J. Reid, J. R. Jaber, V. Martin, A. A. Cunningham, and A. Fernández. 2003. Gas-bubble lesions in stranded cetaceans. Nature 425:575.

Lewis, S. L., and M. A. Maslin. 2015. Defining the Anthropocene. Nature 519:171-180.

Southall, B. L., S. L. DeRuiter, A. Friedlaender, A. K. Stimpert, J. A. Goldbogen, E. Hazen, C. Casey, S. Fregosi, D. E. Cade, A. N. Allen, C. M. Harris, G. Schorr, D. Moretti, S. Guan, and J. Calambokidis. 2019. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. Journal of Experimental Biology 222: doi. 10.1242/jeb.190637.

Tyack, P. L. 2008. Implications for marine mammals of large-scale changes in the marine acoustic environment. Journal of Mammalogy 89(3):549-558.

Weilgart, L. S. 2007a. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Canadian Journal of Zoology 85(11):1091-1116.

Weilgart, L. S. 2007b. A brief review of known effects of noise on marine mammals. International Journal of Comparative Psychology 20(2):159-168.

World Ocean Review. 2014. WOR 3: Marine resources – opportunities and risks. Report No 3. Retrieved from: https://worldoceanreview.com/en/wor-3/oil-and-gas/.

World Ocean Review. 2010. WOR 1: Marine resources – Living with the oceans. A report on the state of the world’s oceans. Report No 1. Retrieved from: https://worldoceanreview.com/en/wor-1/transport/global-shipping/3/

Wright, A. J., N. A. Soto, A. L. Baldwin, M. Bateson, C. M. Beale, C. Clark, T. Deak, E. F. Edwards, A. Fernández, A. Godinho, L. T. Hatch, A. Kakuschke, D. Lusseau, D. Martineau, M. L. Romero, L. S. Weilgart, B. A. Wintle, G. Notarbartolo-di-Sciara, and V. Martin. Do marine mammals experience stress related to anthropogenic noise? International Journal of Comparative Psychology 20(2):274-316.

Vaquita: a porpoise caught between people and money

By: Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

When I first learned of the critically endangered vaquita in early 2015, there were an estimated 97 individuals remaining as reported by CIRVA* (Morell 2014). I was a recent graduate with a bachelor’s degree in Wildlife, Fish, and Conservation Biology, and I, of all people, had never heard of the vaquita. Today, there are an estimated 19 vaquita left (Roth 2019).

Digital painting of a vaquita mother with her calf (Image Source: Aquarium of the Pacific).

The vaquita (Phocoena sinus) is a small porpoise endemic to the Sea of Cortez in the northern region of the Gulf of California, Mexico. It is the most endangered marine mammal and has been for many years, and yet, I had not heard of the vaquita. It wasn’t until I listened to a lunchtime seminar hosted by NOAA Fisheries, that I heard about the porpoise. As a young scientist, “in the field”, I was shocked to realize that I was just learning about an animal, let alone a cetacean, actively going extinct in my lifetime. I believe it’s our job to inform those around us of news in our expertise, and I had failed. I wasn’t informed. As much as I tried in the past four years to describe the decline of the smallest cetacean to anyone who’d listen, I was only reaching a few people at a time. But, today, the vaquita is finally capturing the public’s eye thanks to celebrity support and a feature-length film.

A rare photo of a vaquita (Image Source: Tom Jefferson via the Marine Mammal Center)

From executive producer, Leonardo DiCaprio, comes the Sundance Film Festival Audience Award winner, “Sea of Shadows”. The story of the vaquita truly is an “eco-thriller” and one worth watching. This is not your typical plot line of an endangered species tragically going extinct without action. The vaquita’s story boasts big-name players, such as the Mexican Navy, internationally recognized scientists, Mexican cartels, Chinese mafia, celebrities, the National Marine Mammal Foundation, and Sea Shepherd. At the center of this documentary is the elusive vaquita. The vaquita is not hunted, in fact, this species is not desirable for fisherman. The animal is not aggressive and, in contrast, is notoriously shy, only surfacing to breathe. Furthermore, its name roughly translates into “little cow” because of the rings around its eyes and its docile nature. So, why is this cute creature on the road to extinction? The answer: the wrong place at the wrong time.

“Sea of Shadows” official trailer by National Geographic

The vaquita occupy a small part of the Sea of Cortez where totoaba (Totoaba macdonaldi), a large fish in the drum family, is also endemic. If you’re wondering what a small porpoise and a large fish have in common, then you’d be close to recognizing that is the key to understanding this tragedy. Both species are roughly the same size, one to two meters in length with similar girths. The totoaba, although said to have tender meat, is caught for only one organ: the swim bladder. Now referred to as the “cocaine of the sea”, the dried swim bladders of the totoaba are sold to Mexican cartels who then export the product to China. Once in China, illegal markets sell the swim bladders for up to $100,000USD. Unfortunately, the nets used to illegally catch totoaba, also catch the vaquita. The porpoise has no economic value to the fishermen and therefore are tossed as bycatch. The vaquita is the innocent bystander in a war for money and power.

A man displays the catch from an illegal gillnet, including the totoaba in his arms, and a vaquita, below, that was bycatch (Image Source: Omar Vidal via Aquarium of the Pacific/NOAA Fisheries).

Watching a charismatic species severely decline because of human greed is horrific. The film, however, focuses on the effort of a few incredible organizations that band together in the fight to save the vaquita. Moreover, the multimillion-dollar project, Vaquita CPR, is still ongoing. On a more positive note, in October of 2019, scientists spotted six vaquita during continued conservation and monitoring efforts (Blust & Desk 2019). The path to saving a critically endangered species, especially one that is thought not to do well in captivity, is challenging. The vaquita’s recovery path has many complicated connections which for what appears to be an uphill battle. But, we, the people, are responsible for this. We must support research and conservation by using our voice to share what is happening, for a porpoise and for the world.

*Comité Internacional para la Recuperación de la Vaquita (International Committee for the Recovery of the Vaquita)

Citations:

Blust, Kendal, and Fronteras Desk. “Photo Sparks Increased Concern over Fishing in Vaquita Refuge.” Arizona Public Media, 25 Oct. 2019, https://news.azpm.org/p/news-topical-nature/2019/10/25/160806-photo-sparks-increased-concern-over-fishing-in-vaquita-refuge/.

Morell, Virginia. “Vaquita Porpoise Faces Imminent Extinction-Can It Be Saved?” National Geographic, 15 Aug. 2014, https://www.nationalgeographic.com/news/2014/8/140813-vaquita-gulf-california-mexico-totoaba-gillnetting-china-baiji/.

Roth, Annie. “The ‘Little Cow’ of the Sea Nears Extinction.” National Geographic, 17 Sept. 2019, https://www.nationalgeographic.com/animals/2019/09/vaquita-the-porpoise-familys-smallest-member-nears-extinction/#close.

Can sea otters help kelp under a changing climate?

By Dominique Kone1 and Sara Hamilton2

1Masters Student in Marine Resource Management, 2Doctoral Student in Integrative Biology

Five years ago, the North Pacific Ocean experienced a sudden increase in sea surface temperature (SST), known as the warm blob, which altered marine ecosystem function and structure (Leising et al. 2015). Much research illustrated how the warm blob impacted pelagic ecosystems, with relatively less focused on the nearshore environment. Yet, a new study demonstrated how rising ocean temperatures have partially led to bull kelp loss in northern California. Unfortunately, we are once again observing similar warming trends, representing the second largest marine heatwave over recent decades, and signaling the potential rise of a second warm blob. Taken together, all these findings could forecast future warming-related ecosystem shifts in Oregon, highlighting the need for scientists and managers to consider strategies to prevent future kelp loss, such as reintroducing sea otters.

In northern California, researchers observed a dramatic ecosystem shift from productive bull kelp forests to purple sea urchin barrens. The study, led by Dr. Laura Rogers-Bennett from the University of California, Davis and California Department of Fish and Wildlife, determined that this shift was caused by multiple climatic and biological stressors. Beginning in 2013, sea star populations were decimated by sea star wasting disease (SSWD). Sea stars are a main predator of urchins, causing their absence to release purple urchins from predation pressure. Then, starting in 2014, ocean temperatures spiked with the warm blob. These two events created nutrient-poor conditions, which limited kelp growth and productivity, and allowed purple urchin populations to grow unchecked by predators and increase grazing on bull kelp. The combined effect led to approximately 90% reductions in bull kelp, with a reciprocal 60-fold increase in purple urchins (Figure 1).

Figure 1. Kelp loss and ecosystem shifts in northern California (Rogers-Bennett & Catton 2019).

These changes have wrought economic challenges as well as ecological collapse in Northern California. Bull kelp is important habitat and food source for several species of economic importance including red abalone and red sea urchins (Tegner & Levin 1982). Without bull kelp, red abalone and red sea urchin populations have starved, resulting in the subsequent loss of the recreational red abalone ($44 million) and commercial red sea urchin fisheries in Northern California. With such large kelp reductions, purple urchins are also now in a starved state, evidenced by noticeably smaller gonads (Rogers-Bennett & Catton 2019).

Biogeographically, southern Oregon is very similar to northern California, as both are composed of complex rocky substrates and shorelines, bull kelp canopies, and benthic macroinvertebrates (i.e. sea urchins, abalone, etc.). Because Oregon was also impacted by the 2014-2015 warm blob and SSWD, we might expect to see a similar coastwide kelp forest loss along our southern coastline. The story is more complicated than that, however. For instance, ODFW has found purple urchin barrens where almost no kelp remains in some localized places. The GEMM Lab has video footage of purple urchins climbing up kelp stalks to graze within one of these barrens near Port Orford, OR (Figure 2, left). In her study, Dr. Rogers-Bennett explains that this aggressive sea urchin feeding strategy is potentially a sign of food limitation, where high-density urchin populations create intense resource competition. Conversely, at sites like Lighthouse Reef (~45 km from Port Orford) outside Charleston, OR, OSU and University of Oregon divers are currently seeing flourishing bull kelp forests. Urchins at this reef have fat, rich gonads, which is an indicator of high-quality nutrition (Figure 2, right).

Satellites can detect kelp on the surface of the water, giving scientists a way to track kelp extent over time. Preliminary results from Sara Hamilton’s Ph.D. thesis research finds that while some kelp forests have shrunk in past years, others are currently bigger than ever in the last 35 years. It is not clear what is driving this spatial variability in urchin and kelp populations, nor why southern Oregon has not yet faced the same kind of coastwide kelp forest collapse as northern California. Regardless, it is likely that kelp loss in both northern California and southern Oregon may be triggered and/or exacerbated by rising temperatures.

Figure 2. Left: Purple urchin aggressive grazing near Port Orford, OR (GEMM Lab 2019). Right: Flourishing bull kelp near Charleston, OR (Sara Hamilton 2019).

The reintroduction of sea otters has been proposed as a solution to combat rising urchin populations and bull kelp loss in Oregon. From an ecological perspective, there is some validity to this idea. Sea otters are a voracious urchin predator that routinely reduce urchin populations and alleviate herbivory on kelp (Estes & Palmisano 1974). Such restoration and protection of bull kelp could help prevent red abalone and red sea urchin starvation. Additionally, restoring apex predators and increasing species richness is often linked to increased ecosystem resilience, which is particularly important in the face of global anthropogenic change (Estes et al. 2011)

While sea otters could alleviate grazing pressure on Oregon’s bull kelp, this idea only looks at the issue from a top-down, not bottom-up, perspective. Sea otters require a lot of food (Costa 1978, Reidman & Estes 1990), and what they eat will always be a function of prey availability and quality (Ostfeld 1982). Just because urchins are available, doesn’t mean otters will eat them. In fact, sea otters prefer large and heavy (i.e. high gonad content) urchins (Ostfeld 1982). In the field, researchers have observed sea otters avoiding urchins at the center of urchin barrens (personal communication), presumably because those urchins have less access to kelp beds than on the barren periphery, and therefore, are constantly in a starved state (Konar & Estes 2003) (Figure 3). These findings suggest prey quality is more important to sea otter survival than just prey abundance.

Figure 3. Left: Sea urchin barren (Annie Crawley). Right: Urchin gonads (Sea to Table).

Purple urchin quality has not been widely assessed in Oregon, but early results show that gonad size varies widely depending on urchin density and habitat type. In places where urchin barrens have formed, like Port Orford, purple urchins are likely starving and thus may be a poor source of nutrition for sea otters. Before we decide whether sea otters are a viable tool to combat kelp loss, prey surveys may need to be conducted to assess if a sea otter population could be sustained based on their caloric requirements. Furthermore, predictions of how these prey populations may change due to rising temperatures could help determine the potential for sea otters to become reestablished in Oregon under rapid environmental change.

Recent events in California could signal climate-driven processes that are already impacting some parts of Oregon and could become more widespread. Dr. Rogers-Bennett’s study is valuable as she has quantified and described ecosystem changes that might occur along Oregon’s southern coastline. The resurgence of a potential second warm blob and the frequency between these warming events begs the question if such temperature spikes are still anomalous or becoming the norm. If the latter, we could see more pronounced kelp loss and major shifts in nearshore ecosystem baselines, where function and structure is permanently altered. Whether reintroducing sea otters can prevent these changes will ultimately depend on prey and habitat availability and quality, and should be carefully considered.

References:

Costa, D. P. 1978. The ecological energetics, water, and electrolyte balance of the California sea otter (Enhydra lutris). Ph.D. dissertation, University of California, Santa Cruz.

Estes, J. A. and J.F. Palmisano. 1974. Sea otters: their role in structuring nearshore communities. Science. 185(4156): 1058-1060.

Estes et al. 2011. Trophic downgrading of planet Earth. Science. 333(6040): 301-306.

Harvell et al. 2019. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Science Advances. 5(1).

Konar, B., and J. A. Estes. 2003. The stability of boundary regions between kelp beds and deforested areas. Ecology. 84(1): 174-185.

Leising et al. 2015. State of California Current 2014-2015: impacts of the warm-water “blob”. CalCOFI Reports. (56): 31-68.

Ostfeld, R. S. 1982. Foraging strategies and prey switching in the California sea otter. Oecologia. 53(2): 170-178.

Reidman, M. L. and J. A. Estes. 1990. The sea otter (Enhydra lutris): behavior, ecology, and natural history. United States Department of the Interior, Fish and Wildlife Service, Biological Report. 90: 1-126.

Rogers-Bennett, L., and C. A. Catton. 2019. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports. 9:15050.

Tegner, M. J., and L. A. Levin. 1982. Do sea urchins and abalones compete in California? International Echinoderms Conference, Tampa Bay. J. M Lawrence, ed.

The significance of blubber hormone sampling in conservation and monitoring of marine mammals

By: Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Marine mammals are challenging to study for many reasons, and specifically because they inhabit the areas of the Earth that are uninhabited by people: the oceans. Monitoring marine mammal populations to gather baselines on their health condition and reproductive status is not as simple as trap and release, which is a method often conducted for terrestrial animals. Marine mammals are constantly moving in vast areas below the surface. Moreover, cetaceans, which do not spend time on land, are arguably the most challenging to sample.

One component of my project, based in California, USA, is a health assessment analyzing hormones of the bottlenose dolphins that frequent both the coastal and the offshore waters. Therefore, I am all too familiar with the hurdles of collecting health data from living marine mammals, especially cetaceans. However, the past few decades have seen major advancements in technology both in the laboratory and with equipment, including one tool that continues to be critical in understanding cetacean health: blubber biopsies.

Biopsy dart hitting a bottlenose dolphin below the dorsal fin. Image Source: NMFS

Blubber biopsies are typically obtained via low-powered crossbow with a bumper affixed to the arrow to de-power it once it hits the skin. The arrow tip has a small, pronged metal attachment to collect an eraser-tipped size amount of tissue with surface blubber and skin. I compare this to a skin punch biopsies in humans; it’s small, minimally-invasive, and requires no follow-up care. With a small team of scientists, we use small, rigid-inflatable vessels to survey the known locations of where the bottlenose dolphins tend to gather. Then, we assess the conditions of the seas and of the animals, first making sure we are collecting from animals without potentially lowered immune systems (no large, visible wounds) or calves (less than one years old). Once we have photographed the individual’s dorsal fin to identify the individual, one person assembles the biopsy dart and crossbow apparatus following sterile procedures when attaching the biopsy tips to avoid infection. Another person prepares to photograph the animal to match the biopsy information to the individual dolphin. One scientist aims the crossbow for the body of the dolphin, directly below the dorsal fin, while the another photographs the biopsy dart hitting the animal and watches where it bounces off. Then, the boat maneuvers to the floating biopsy dart to recover the dart and the sample. Finally, the tip with blubber and skin tissue is collected, again using sterile procedures, and the sample is archived for further processing. A similar process, using an air gun instead of a crossbow can be viewed below:

GEMM Lab members using an air gun loaded with a biopsy dart to procure marine mammal blubber from a blue whale in New Zealand. Video Source: GEMM Laboratory.

Part of the biopsy process is holding ourselves to the highest standards in our minimally-invasive technique, which requires constant practice, even on land.

Alexa practicing proper crossbow technique on land under supervision. Image Source: Alexa Kownacki

Blubber is the lipid-rich, vascularized tissue under the epidermis that is used in thermoregulation and fat storage for marine mammals. Blubber is an ideal matrix for storing lipophilic (fat-loving) steroid hormones because of its high fat content. Steroid hormones, such as cortisol, progesterone, and testosterone, are naturally circulating in the blood stream and are released in high concentrations during specific events. Unlike blood, blubber is less dynamic and therefore tells a much longer history of the animal’s nutritional state, environmental exposure, stress level, and life history status. Blubber is the cribs-notes version of a marine mammal’s biography over its previous few months of life. Blood, on the other hand, is the news story from the last 24 hours. Both matrices serve a specific purpose in telling the story, but blubber is much more feasible to obtain from a cetacean and provides a longer time frame in terms of information on the past.

A simplified depiction of marine mammal blubber starting from the top (most exterior surface) being the skin surface down to the muscle (most interior). Image Source: schoolnet.org.za

I use blubber biopsies for assessing cortisol, testosterone, and progesterone in the bottlenose dolphins. Cortisol is a glucocorticoid that is frequently associated with stress, including in humans. Marine mammals utilize the same hypothalamic-pituitary-adrenal (HPA) axis that is responsible for the fight-or-flight response, as well as other metabolic regulations. During prolonged stressful events, cortisol levels will remain elevated, which has long-term repercussions for an animal’s health, such as lowered immune systems and decreased ability to respond to predators. Testosterone and progesterone are sex hormones, which can be used to indicate sex of the individual and determine reproductive status. This reproductive information allows us to assess the population’s composition and structure of males and females, as well as potential growth or decline in population (West et al. 2014).

Alexa using a crossbow from a small boat off of San Diego, CA. Image Source: Alexa Kownacki

The coastal and offshore bottlenose dolphin ecotypes of interest in my research occupy different locations and are therefore exposed to different health threats. This is a primary reason for conducting health assessments, specifically analyzing blubber hormone levels. The offshore ecotype is found many kilometers offshore and is most often encountered around the southern Channel Islands. In contrast, the coastal ecotype is found within 2 kilometers of shore (Lowther-Thieleking et al. 2015) where they are subjected to more human exposure, both directly and indirectly, because of their close proximity to the mainland of the United States. Coastal dolphins have a higher likelihood of fishery-related mortality, the negative effects of urbanization including coastal runoff and habitat degradation, and recreational activities (Hwang et al. 2014). The blubber hormone data from my project will inform which demographics are most at-risk. From this information, I can provide data supporting why specific resources should be allocated differently and therefore help vulnerable populations. Further proving that the small amount of tissue from a blubber biopsy can help secure a better future for population by adjusting and informing conservation strategies.

Literature Cited:

Hwang, Alice, Richard H Defran, Maddalena Bearzi, Daniela. Maldini, Charles A Saylan, Aime ́e R Lang, Kimberly J Dudzik, Oscar R Guzo n-Zatarain, Dennis L Kelly, and David W Weller. 2014. “Coastal Range and Movements of Common Bottlenose Dolphins (Tursiops Truncatus) off California and Baja California, Mexico.” Bulletin of the Southern California Academy of Sciences 113 (1): 1–13. https://doi.org/10.3390/toxins6010211.

Lowther-Thieleking, Janet L., Frederick I. Archer, Aimee R. Lang, and David W. Weller. 2015. “Genetic Differentiation among Coastal and Offshore Common Bottlenose Dolphins, Tursiops Truncatus, in the Eastern North Pacific Ocean.” Marine Mammal Science 31 (1): 1–20. https://doi.org/10.1111/mms.12135.

West, Kristi L., Jan Ramer, Janine L. Brown, Jay Sweeney, Erin M. Hanahoe, Tom Reidarson, Jeffry Proudfoot, and Don R. Bergfelt. 2014. “Thyroid Hormone Concentrations in Relation to Age, Sex, Pregnancy, and Perinatal Loss in Bottlenose Dolphins (Tursiops Truncatus).” General and Comparative Endocrinology 197: 73–81. https://doi.org/10.1016/j.ygcen.2013.11.021.

A Series of Short Stories from A Field Season in Port Orford

By Mia Arvizu, Marine Studies Initiative (MSI) & GEMM Lab summer intern, OSU junior

Part 1: The Green Life Jacket

The swells are churning and for once my stomach is calm. I take advantage of it while I can, and head out on the kayak. Another beautiful day, another good data set. After about three hours in the kayak and a long paddle fighting winds and swells, we arrive at TC1. That’s short for Tichenor Cove Station 1. I’m fairly tired by now but my teammate and I are determined to finish all stations today. GPS says we arrived, and I paddle against any slight movement to keep us on station. It’s getting more difficult though, so I check in with Anthony, one of the high school interns this summer. “Anthony, have you sent the GoPro camera down yet?”  I take a quick look back peering over my green life jacket. Red flash, and I know it’s on. Anthony sends it down, and I watch as it plunges into depths I couldn’t see on my own. I’m confident it’s doing its job. 

Part 2: The GoPro Dive

The green life jacket is familiar, but there’s a different soul, a different face every year. It’s the same month though. August – the month of whales. 

Red flash, I’m on,  and it’s my time to shine. The scientists debrief me on my latest mission, and I’m alive. “Secchi depth .75 meters.” Hmm, low visibility. This may be a tough one. “Station TC1” One of my favorites but challenging no doubt. “Time is 10:36. 5, 6, 7, 8…” I’m ready. A flush of swirling water surrounds me as I plunge into the depths of a different realm. I’m cocooned in the beauty of an ocean so blue, so majestic, so entrancing. Oh, the mission! Right, I need to stay focused. They lurk all around but with sand clouding the water, I can barely see. I just need one good visual of the purple spikes and the swaying green leaves, and the mission will be complete. I glance just to the left and oh my!

Sea urchins actively foraging on kelp at station TC1 in Tichenor Cove. Source: GEMM Lab.

A giant purple spike comes too close. I barely caught a glimpse of it. I need a better shot, but I only have so much control especially with these undercurrents. I’m ready now though. I peer through the sediment and nothing, but one quick swivel to the right shows me what I feared and what the green life jackets predicted: The purple spikes have grown too many and reduced the swaying greens down to half chewed, severed, scared dead masses. I thought their hypothesis was right, but I didn’t expect this degree of damage. It’s so frightening I almost look away.

But I don’t. I have a mission. So, I look straight ahead documenting the scene. I haven’t seen it this bad in the past years. I wonder what the green life jackets will do about this. I feel a tug, and I’m reeled in. I guess I’ll find out.

GoPro video taken from tandem research kayak during 2019 gray whale field season in Tichenor Cove, Port Orford. Source: GEMM Lab.

Part 3: The Science, how I see it

After collecting data in the kayak, I go back to the field station ready to do data processing. I grab the GoPro and take a look at the video from TC1. I’m both amazed and terrified for the surrounding habitat from what I see. Sea urchins seem to have been actively foraging on kelp stalks. 

Last summer, around this time, a previous intern pointed out that he was witnessing damaged kelp and a notable number of urchins in the GoPro videos. Thus, the GEMM Lab is looking into the relationship between kelp health and sea urchin abundance in Port Orford, which can have significant trophic cascades for the rest of the ecosystem, including whales and their zooplankton prey. The hypothesis is that if sea urchin populations increase in number they may actively forage on kelp, reducing the health of that habitat. Many creatures depend on this habitat including zooplankton which whales feed on. I have looked at videos from past years and the temporal difference in the abundance of urchins is stark. A detailed methodology for the project and our pending results will be featured in a later post, but for now this story is unfolding before our eyes and the GoPro’s lens as well. 

Part 4: The Transformation from STEM to STEAM

I hope you enjoyed these short stories. As the writer, it was nice to express the ecological phenomena I’ve learned about in the last few weeks between sea urchins and kelp in this creative and artistic outlet. Especially since I feel science can be rigid at times. It can be easy to lose myself in numbers and large datasets. However, by tying together the arts and STEM (Science, Technology, Engineering, Mathematics), there is more space for well-rounded inquiry and expressive results. STEAM, which is STEM with the Arts included, is not a new movement. Examples of STEAM are preserved in the past and is ongoing in present examples. A great example of how the sciences and arts are merged together is in the songs of Aboriginal Australians. These songs can take hours to recite fully and are full of environmental knowledge such as species types, behavior of animals, and edible plants. The combination of art and STEM is also displayed in the modern age and is shown in Leah Heiss’s work to create jewelry that helps measure cardiac data and also helps diabetics administer their insulin.  

This is one of Leah’s feature blends of biotechnology and jewelry. It measures cardiac data and is primarily beneficial for patients at risk of heart attacks. Source: Leah Heiss.

There are many ways in which the two subjects can merge together, making each other stronger and better. As a well-rounded student pursuing Environmental Science and interested dance and writing, I am comforted to know that STEAM can allow me to blend my interests. 

Intricacies of Zooplankton Species Identification

By Donovan Burns, Astoria High School Junior, GEMM Lab summer intern

The term zooplankton is used to describe a large number of creatures; the exact definition is any animal that cannot move against a sustained current in the marine environment. There are two main types of plankton: holoplankton and meroplankton. Meroplankton are organisms that are plankton for only part of their life cycle. So this makes most sea creatures plankton, for instance, salmon, sunfish, tuna, and most other fish are meroplankton because they start out their lives as plankton. Holoplankton are plankton that remain plankton for their whole lives, these include mysid shrimp, most marine worms, and most jellyfish.

I have spent a good deal of time this summer looking through a microscope at the zooplankton we have captured during sampling from our research kayak, trying to distinguish and identify different species. Telsons, the tail of the tail, are what we use to identify different types of mysid shrimp, which are a primary gray whale prey item along the Oregon coast and the most predominant type of zooplankton we capture in our sampling. For instance Neomysis is a genus of mysid shrimp and is one of the two most abundant zooplankton species we get. Their telsons end with two spikes that are somewhat longer than the spikes on the side of the telson.  This look is distinct from Holmesimysis sculpta, the other of the two most abundant zooplankton species we get, which have four-pronged telsons with varying sizes of spikes along the sides of the telson. Alienacanthomysis macropsis is identified by both their long eye stalks and their rather bland rounded telson.

Caprellidae. Source: R. Norman.

However, creatures that are not mysid shrimp cannot be identified this way.  Like gammarids, they look like fleas.  We have only found one kind of gammarid here in Port Orford this year, Atylus tridens. There are other types but that is the only type we have found this year. After that, we have Caprellidae, also known as skeleton shrimp. They are long and stalky, and have claws in every spot where they could have claws.

Copepod. Source: L. Hildebrand.

Then there are copepods. Copepods are tiny and have long antennae that string down to the sides of their bodies. We also have been seeing lots of crab larvae. I have also seen a couple of polychaete worms, which are marine worms with many legs and segments. The only reason I was able to identify them as polychaetes is due to my marine biology class at Astoria High School where we identified these worms using microscopes before.

We also have had some trouble identifying somethings. For instance, we have found a few individuals of a type of mysid shrimp with a rake-like tail that we are still trying to identify.  Also, we have captured some jellyfish that we are not trying to identify. When the kayak team gets back in from gathering samples, we freeze the samples to kill and preserve the critters in them. This process turns the jellyfish to mush, so they are hard to identify.

To identify these zooplankton and other critters, we put them into a Petri dish and under a dissection scope, at which point we use forceps to move and pivot creatures.  If a jellyfish had just eaten another plankton, we have to cut it open to get the plankton out so we can identify it.  

Sometimes we have large samples of thousands of the same creature, in this case, we would normally sub-sample it. Sub-sampling is when we take a portion of a sample and identify and count individual zooplankton in that sub-sample. Then we multiply those counts by the portion of the whole sample to get the approximate total number that are in that sample.  For instance, say we had a rather large sample, we would take a tenth of that sample and count what is in it. Say we count 500 individuals in that tenth. We would then multiply 500 by ten to get the total number in that whole sample.

Then there are some plankton that we do not catch, like large jellyfish.  The kayak team has gotten photos of a giant jellyfish that was nearly a meter long.

Jellyfish seen by the kayak team. Source: L. Hildebrand.

All in all, Port Orford has an amazing and diverse population of marine life. From gray whales to thresher sharks to mysid shrimp to copepods to jellyfish, this little ecosystem has pretty much some of everything. 

Introducing Crew Cinco – the Port Orford Gray Whale Foraging Ecology Field Team of 2019

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

It seems unfathomable to me that one year and two months ago I had never used a theodolite before, never been in an ocean kayak before, never identified zooplankton before, never seen a Time-Depth-Recorder (TDR) before. Now, one year later, it seems like all of those tools, techniques and things are just a couple of old friends with which I am being reunited with again. My second field season as the project team lead of the gray whale foraging ecology project in Port Orford (PO) is slowly getting underway and so many of the lessons I learned from my first field season last year have already helped me tremendously this year. I know how to interpret weather forecasts and determine whether it will be a kayak-appropriate day. I know how to figure out the quirks of Pythagoras, the program we use to interface with our theodolite which helps us track whales from our cliff site. I know how to keep track of a budget and feed a team of hungry researchers after a long day of work. Knowing all of these things ahead of this year’s field season have made me feel a little more prepared and at ease with the training of my team and the work to be done. Nevertheless, there are always new curveballs to be thrown my way and while they can often be frustrating, I enjoy the challenges that being a team leader has to offer as it allows me to continue to grow as a field research scientist. 

Figure 1. Crew Cinco tracks a whale in Tichenor Cove. Source: L Hildebrand.

2019 marks the fifth year that this project has been taking place in PO. Back in the summer of 2015, former GEMM Lab Master’s student Florence Sullivan started this project together with Leigh. That year the research focused more on investigating vessel disturbance to gray whales by comparing sites of heavy (Boiler Bay) to low boat traffic (Port Orford). The effort found that there were significant differences in gray whale activity budgets between the heavy and low boat traffic conditions (Sullivan & Torres 2018). The following year, the focus of the research switched to being more on the foraging ecology side of things and the project was based solely out of Port Orford, as it continues to be to this day. Being in our fifth year means that we are starting to build a humbly-sized database of sightings across multiple years allowing me to investigate potential individual specialization of the whales that we document. Similarly, multiple years of prey sampling is starting to reveal temporal and spatial trends of prey community assemblages.

Figure 2. Buttons (pictured above) is one of the stars of the Port Orford gray whale foraging ecology project as he has been seen every year since 2016. Crew Cinco has already seen him three times since the start of August. Source: L Hildebrand.

It has become a tradition to come up with a name for the field team that spends 6 weeks at the Oregon State University (OSU) Port Orford Field Station to collect the data for the project. It started with Team Ro“buff”stus in 2015, which I believe carried through until 2017. This is understandable since it’s such a clever name. It’s a play on the species name for gray whales, robustus, but the word “Buff” has been substituted in the center. Buffs are pieces of cloth sewn into a cylindrical shape, often with fun patterns or colors, that can be used as face masks, headbands, and scarves, which come in very handy when your face is exposed to the elements. Doing this project, we can be confronted by wind, sun, fog and sea water all in one day, so Buffs have definitely served the team members very well over the years. Last year, as the project’s torch was passed from Florence to myself, I felt a new team name was apt, and so last year’s team decided our name would be Team Whale Storm. I believe it was because we said we would take the whale world by storm with our insanely good theodolite tracking and kayak sampling skills. With a new year and new team upon us, a new team name was in order. As the title of this blog post indicates, this year the team is called Crew Cinco. The reason behind this name is that we are the fifth team to carry out this field work. Since the gray whales breed in the lagoons of Baja California, Mexico, I like to think that their native language is Spanish. Hence, we have decided that instead of being Crew Five, we are Crew Cinco, as cinco is the Spanish word for five (besides, alliteration makes for a much better team name).

Now that you are up to speed on the history of the PO gray whale project, let me tell you a little about who is part of Crew Cinco and what we have been up to already.

This year’s Marine Studies Initiative OSU undergraduate intern is Mia Arvizu. Mia has just finished her sophomore year at OSU and majors in Environmental Science. Besides being my co-captain this year in the field, Mia is also undertaking an independent research project which focuses on the relationship between sea urchin abundance, kelp health and gray whale foraging. She will tell you all about this project in a few weeks when she takes over the GEMM lab blog. Aside from her interest in ecology and the way science can be used to help local communities in a changing environment, Mia is a dancer, having performed in several dances in OSU’s annual luau this year, and she is currently teaching herself Spanish and Hawaiian.

Both of our high school interns this year are from Astoria. Anthony Howe has just graduated from Astoria High School and will be starting at Clatsop Community College in the fall. His plan is to transfer to OSU and to pursue his interest in marine biology. Anthony, like myself, was born in Germany and lived there until he was six, which means that he is able to speak fluent German. He also introduced the team to the wonders of the Instant Pot, which has made cooking for a team of four hungry scientists much simpler.

Donovan Burns is our other high school intern. He will be going into his junior year in the fall. Donovan never ceases to amaze us with the seemingly endless amounts of general knowledge he has, often sharing facts about Astoria’s history to Asimov’s Laws of Robotics to pickling vegetables, specifically carrots, with us during dinner or while scanning for whales on the cliff site. He also named the first whale we saw here this season – Speckles. 

Figure 3. Crew Cinco, from left to right: Anthony Howe, Donovan Burns, Lisa Hildebrand and Mia Arvizu. Source: L Torres.

Crew Cinco has already been in PO for two weeks now. After having a full team meeting with Leigh in Newport and a GEMM lab summer pizza party, we headed south to begin our 6-week field season. It’s hard to believe that the two training weeks are already over. The team worked hard to figure out the subtleties of the theodolite, observe different gray whales and start to understand their dive and foraging patterns, undertake a kayak paddle & safety course, as well as CPR and First Aid training, learn about data processing and management, and how to use a variety of gizmos to aid us in data collection. But it hasn’t all been work. We enjoyed a day in the Californian Redwoods on one of our day’s off and picked blueberries at the Twin Creek Ranch, stocking our freezer with several bags of juicy berries. We have played ‘Sorry!’ perhaps one too many times already (we are in desperate need of some more boardgames if anyone wants to send some our way to the field station!), and enjoyed many walks and runs on beautiful Battle Rock Beach. 

The next four weeks will not be easy – very early mornings, lots of paddling and squinting into the sun, followed by several hours in the lab processing samples and backing up data. But the next four weeks will also be extremely rewarding – learning lots of new skills that will be valuable beyond this 6-week period, revealing ecological trends and relationships, and ultimately (the true reason for why Mia, Anthony, Donovan and myself are more than happy to put in 6 weeks-worth of hard work), the chance to see whales every day up close and personal. Follow Crew Cinco’s journey over the next few weeks as my interns will be posting to the blog for the next three weeks!

References

Sullivan, F.A., & Torres L.G. Assessment of vessel disturbance to gray whales to inform sustainable ecotourism. Journal of Wildlife Management, 2018. 82: 896-905. 

Lingering questions on the potential to bring sea otters back to Oregon

By Dominique Kone, Masters Student in Marine Resource Management

By now, I’m sure you’re aware of recent interests to reintroduce sea otters to Oregon. To inform this effort, my research focuses on predicting suitable sea otter habitat and investigating the potential ecological effects if sea otters are reintroduced in the future. This information will help managers gain a better understanding of the potential for sea otters to reestablish in Oregon, as well as how Oregon’s ecosystems may change via top-down processes. These analyses will address some sources of uncertainties of this effort, but there are still many more questions researchers could address to further guide this process. Here, I note some lingering questions I’ve come across in the course of conducting my research. This is not a complete list of all questions that could or should be investigated, but they represent some of the most interesting questions I have and others have in Oregon.

Credit: Todd Mcleish

The questions, and our associated knowledge on each of these topics:

Is there enough available prey to support a robust sea otter population in Oregon?

Sea otters require approximately 30% of their own body weight in food every day (Costa 1978, Reidman & Estes 1990). With a large appetite, they not only need to spend most of their time foraging, but require a steady supply of prey to survive. For predators, we assume the presence of suitable habitat is a reliable proxy for prey availability (Redfern et al. 2006). Whereby, quality habitat should supply enough prey to sustain predators at higher trophic levels.

In making these habitat predictions for sea otters, we must also recognize the potential limitations of this “habitat equals prey” paradigm, in that there may be parcels of habitat where prey is unavailable or inaccessible. In Oregon, there could be unknown processes unique to our nearshore ecosystems that would support less prey for sea otters. This possibility highlights the importance of not only understanding how much suitable habitat is available for foraging sea otters, but also how much prey is available in these habitats to sustain a viable otter population in the future. Supplementing these habitat predictions with fishery-independent prey surveys is one way to address this question.

Credit: Suzi Eszterhas via Smithsonian Magazine

How will Oregon’s oceanographic seasonality alter or impact habitat suitability?

Sea otters along the California coast exist in an environment with persistent Giant kelp beds, moderate to low wave intensity, and year-round upwelling regimes. These environmental variables and habitat factors create productive ecosystems that provide quality sea otter habitat and a steady supply of prey; thus, supporting high densities of sea otters. This environment contrasts with the Oregon coast, which is characterized by seasonal changes in bull kelp and wave intensity. Summer months have dense kelp beds, calm surf, and strong upwellings. While winter months have little to no kelp, weak upwellings, and intense wave climates. These seasonal variations raise the question as to how these temporal fluctuations in available habitat could impact the number of sea otters able to survive in Oregon.

In Washington – an environment like Oregon – sea otters exhibit seasonal distribution patterns in response to intensifying wave climates. During calm summer months, sea otters primarily forage along the outer coast, but move into more protected areas, such as the Strait of Juan de Fuca, during winter months (Laidre et al. 2009). If sea otters were reintroduced to Oregon, we may very well observe similar seasonal movement patterns (e.g. dispersal into estuaries), but the degree to which this seasonal redistribution and reduction in foraging habitat could impact sea otter reestablishment and recovery is currently unknown.

Credit: Oregon Coast Aquarium

In the event of a reintroduction, do northern or southern sea otters have a greater capacity to adapt to Oregon environments?

In the early 1970’s, Oregon’s first sea otter translocation effort failed (Jameson et al. 1982). Since then, hypotheses on the potential ecological differences between northern and southern sea otters have been proposed as potential factors of the failed effort, potentially due to different abilities to exploit specific prey species. Studies have demonstrated that northern and southern sea otters have slight morphological differences – northern otters having larger skulls and teeth than southern otters (Wilson et al. 1991). This finding has created the hypothesis that the northern otter’s larger skull and teeth allow it to consume prey with denser exoskeletons, and thereby can exploit a greater diversity of prey species. However, there appears to be a lack of evidence to suggest larger skulls and teeth translate to greater bite force. Based on morphology alone, either sub-species could be just as successful in exploiting different prey species.

A different direction to address questions around adaptability is to look at similarities in habitat and oceanographic characteristics. Sea otters exist along a gradient of habitat types (e.g. kelp forests, estuaries, soft-sediment environments) and oceanographic conditions (e.g. warm-temperature to cooler sub-Arctic waters) (Laidre et al. 2009, Lafferty et al. 2014). Yet, we currently don’t know how well or quickly otters can adapt when they expand into new habitats that differ from ones they are familiar with. Sea otters must be efficient foragers and need to acquire skills that allow them to effectively hunt specific prey species (Estes et al. 2003). Hypothetically, if we take sea otters from rocky environments where they’ve developed foraging skills to hunt sea urchins and abalones, and place them in a soft-sediment environment, how quickly would they develop new foraging skills to exploit soft-sediment prey species? Would they adapt quickly enough to meet their daily prey requirements?

Credit: Eric Risberg/Associated Press via The Columbian

In Oregon, specifically, how might climate change impact sea otters, and how might sea otters mediate climate impacts?

Climate change has been shown to directly impact many species via changes in temperature (Chen et al. 2011). Some species have specific thermal tolerances, in which they can only survive within a specified temperature range (i.e. maximum and minimum). Once the temperature moves out of that range, the species can either move with those shifting water masses, behaviorally adapt or perish (Sunday et al. 2012). It’s unclear if and how changing temperatures will impact sea otters, directly. However, sea otters could still be indirectly affected via impacts to their prey. If prey species in sea otter habitat decline due to changing temperatures, this would reduce available food for otters. Ocean acidification (OA) is another climate-induced process that could indirectly impact sea otters. By creating chemical conditions that make it difficult for species to form shells, OA could decrease the availability of some prey species, as well (Gaylord et al. 2011).

Interestingly, these pathways between sea otters and climate change become more complex when we consider the potentially mediating effects from sea otters. Aquatic plants – such as kelp and seagrass – can reduce the impacts of climate change by absorbing and taking carbon out of the water column (Krause-Jensen & Duarte 2016). This carbon sequestration can then decrease acidic conditions from OA and mediate the negative impacts to shell-forming species. When sea otters catalyze a tropic cascade, in which herbivores are reduced and aquatic plants are restored, they could increase rates of carbon sequestration. While sea otters could be an effective tool against climate impacts, it’s not clear how this predator and catalyst will balance each other out. We first need to investigate the potential magnitude – both temporal and spatial – of these two processes to make any predictions about how sea otters and climate change might interact here in Oregon.

Credit: National Wildlife Federation

In Summary

There are several questions I’ve noted here that warrant further investigation and could be a focus for future research as this potential sea otter reintroduction effort progresses. These are by no means every question that should be addressed, but they do represent topics or themes I have come across several times in my own research or in conversations with other researchers and managers. I think it’s also important to recognize that these questions predominantly relate to the natural sciences and reflect my interest as an ecologist. The number of relevant questions that would inform this effort could grow infinitely large if we expand our disciplines to the social sciences, economics, genetics, so on and so forth. Lastly, these questions highlight the important point that there is still a lot we currently don’t know about (1) the ecology and natural behavior of sea otters, and (2) what a future with sea otters in Oregon might look like. As with any new idea, there will always be more questions than concrete answers, but we – here in the GEMM Lab – are working hard to address the most crucial ones first and provide reliable answers and information wherever we can.

References:

Chen, I., Hill, J. K., Ohlemuller, R., Roy, D. B., and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science. 333: 1024-1026.

Costa, D. P. 1978. The ecological energetics, water, and electrolyte balance of the California sea otter (Enhydra lutris). Ph.D. dissertation, University of California, Santa Cruz.

Estes, J. A., Riedman, M. L., Staedler, M. M., Tinker, M. T., and B. E. Lyon. 2003. Individual variation in prey selection by sea otters: patterns, causes and implications. Journal of Animal Ecology. 72: 144-155.

Gaylord et al. 2011. Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology. 214: 2586-2594.

Jameson, R. J., Kenyon, K. W., Johnson, A. M., and H. M. Wight. 1982. History and status of translocated sea otter populations in North America. Wildlife Society Bulletin. 10(2): 100-107.

Krause-Jensen, D., and C. M. Duarte. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience. 9: 737-742.

Lafferty, K. D., and M. T. Tinker. 2014. Sea otters are recolonizing southern California in fits and starts. Ecosphere.5(5).

Laidre, K. L., Jameson, R. J., Gurarie, E., Jeffries, S. J., and H. Allen. 2009. Spatial habitat use patterns of sea otters in coastal Washington. Journal of Marine Mammalogy. 90(4): 906-917.

Redfern et al. 2006. Techniques for cetacean-habitat modeling. Marine Ecology Progress Series. 310: 271-295.

Reidman, M. L. and J. A. Estes. 1990. The sea otter (Enhydra lutris): behavior, ecology, and natural history. United States Department of the Interior, Fish and Wildlife Service, Biological Report. 90: 1-126.

Sunday, J. M., Bates, A. E., and N. K. Dulvy. 2012. Thermal tolerance and the global redistribution of animals. Nature: Climate Change. 2: 686-690.

Wilson, D. E., Bogan, M. A., Brownell, R. L., Burdin, A. M., and M. K. Maminov. 1991. Geographic variation in sea otters, Ehydra lutris. Journal of Mammalogy. 72(1): 22-36.

Our GEM(M), Ruby, is back in action!

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Every season, or significant period of time, usually has a distinct event that marks its beginning. For example, even though winter officially begins when the winter solstice occurs sometime between December 20 and December 23, many people often associate the first snowfall as the real start of winter. To mark the beginning of schooling, when children start 1stgrade in Germany (which is where I’m from), they receive something called a “Zuckertüte”, which translated means “sugar bag”. It is a large (sometimes as large as the child) cone-shaped container made of cardboard filled with toys, chocolates, sweets, school supplies and various other treats topped with a large bow.

Receiving my Zuckertüte in August of 2001 before starting 1st grade. Source: Ines Hildebrand.

I still remember (and even have) mine – it was almost as tall as I was, had a large Barbie printed on it (and a real one sitting on top of it) and was bright pink. And of course, while at a movie theatre, once the lights dim completely and the curtain surrounding the screen opens just a little further, members of the audience stop chit-chatting or sending text messages, everyone quietens down and puts their devices away – the film is about to start. There are hundreds upon thousands of examples like these – moments, events, days that mark the start of something.

In the past, the beginning of summer has always been tied to two things for me: the end of school and the chance to be outside in the sun for many hours and days. This reality has changed slightly since moving to Oregon. While I don’t technically have any classes during the summer, the work definitely won’t stop. There are still dozens of papers to read, samples to run in the lab, and data points to plot. For anyone from Oregon or the Pacific Northwest (PNW), it’s pretty well known that the weather can be a little unpredictable and variable, meaning that summer might not always be filled with sunny days. Despite somewhat losing these two “summer markers”, I have found a new event to mark the beginning of summer – the arrival of the gray whales.

Their propensity for coastal waters and near-shore feeding is part of what makes gray whales so unique and arguably “easier” to study than some other baleen whale species. Image captured under NOAA/NMFS permit #21678. Source: Leigh Torres.

 

It’s official – the gray whale field season is upon us! As many of you may already know, the GEMM Lab has two active gray whale research projects: investigating the impacts of ocean noise on gray whale physiology and exploring potential individual foraging specialization among the Pacific Coast Feeding Group (PCFG) gray whales. Both projects involve field work, with the former operating out of Newport and the latter taking place in Port Orford, both collecting photographs and a variety of samples and tracklines to study the PCFG, which is a sub-group of the larger Eastern North Pacific (ENP) population. June 1st is the widely accepted “cut-off date” for the PCFG whales, whereby gray whales seen after June 1st along the PNW coastline (specifically northern California, Oregon, Washington and British Columbia) are considered members of the PCFG. While this date is not the only qualifying factor for an individual to be considered a PCFG member, it is a good general rule of thumb. Since last week happened to be the first week of June, PI Leigh Torres, field technician Todd Chandler and myself launched out onto the Pacific Ocean in our trusty RHIB Ruby twice looking for gray whales, and it sure was a successful start to the season!

Even though I have done small boat-based field work before, every project and field team operates a little differently, which is why I was a little nervous at first. There are a lot of components to the Newport-based project as Leigh & co. assess gray whale physiology by collecting fecal samples, drone imagery and taking photographs, observing behavior patterns, as well as assessing local prey through GoPro footage and light traps. I wasn’t worried about the prey components of the research, since there is plenty of prey sampling involved in my Port Orford research, however I was worried about the whale side of things. I wasn’t sure whether I would be able to catch the drone as it returned back home to Ruby, fearing I might fumble and let it slip through my fingers. I also experienced slight déjà vu when handling the net we use to collect the fecal samples as I was forced to think back to some previous field work that involved collecting a biopsy dart with a net as well. During that project, I had somehow managed to get the end of the net stuck in the back of the boat and as I tried to scoop up the biopsy dart with the net-end, the pole became more and more stuck while the water kept dragging the net-end down and eventually the pole ended up snapping in my hands. On top of all this anxiety and work, trying to find your footing in a small RHIB like Ruby packed with lots of gear and a good amount of swell doesn’t make any of those tasks any easier.

However, as it turned out, none of my fears came to fruition. As soon as Todd fired up Ruby’s engine and we whizzed out and under the Newport bridge, I felt exhilarated. I love field work and was so excited to be out on the water again. During the two days I was able to observe multiple individuals of a species of whale that I find unique and fascinating.

Markings and pigmentation on the flukes are also unique to individuals and allow us to perform photo identification to track individuals over months and years. Image captured under NOAA/NMFS permit #21678. Source: Leigh Torres.

I felt back in my natural element and working with Leigh and Todd was rewarding and fun, as I have so much to learn from their years of experience and natural talent in the field dealing with stressful situations and juggling multiple components and gear. Even though I wasn’t out there collecting data for my own project, some of my observations did get me thinking about what I hope to focus on in my thesis – individualization. It is always interesting to see how differently whales will behave, whether due to the substrate we find them over, the water depths we find them in, or what their surfacing patterns are like. Although I still have six weeks to go until my field season starts and feel lucky to have the opportunity to help Leigh and Todd with the Newport field work, I am already looking forward to getting down to Port Orford in mid-July and starting the fifth consecutive gray whale field season down there.

But back to Newport – over the course of two days, we were able to deploy and retrieve one light trap to collect zooplankton, collect two fecal samples, perform two GoPro drops, fly the drone three times, and take hundreds of photos of whales. Leigh and Todd were both glad to be reunited with an old friend while I felt lucky to be able to meet such a famous lady – Scarback. A whale with a long sighting history not just for the GEMM Lab but for various researchers along the coast that study this population. Scarback is well-known (and easily identified) by the large concave injury on her back that is covered in whale lice, or cyamids. While there are stories about how Scarback’s wound came to be, it is not known for sure how she was injured. However, what researchers do know is that the wound has not stopped this female from reproducing and successfully raising several calves over her lifetime. After hearing her story from Leigh, I wasn’t surprised that both she and Todd were so thrilled to get both a fecal sample and a drone flight from her early in the season. The two days weren’t all rosy; most of day 1 was shrouded in a cloud of mist resulting in a thin but continuous layer of moisture forming on our clothes, while on day 2 we battled with some pretty big swells (up to 6 feet tall) and in typical Oregon coast style we were victims of a sudden downpour for about 10 minutes. We had some excellent sightings and some not-so-excellent sightings. Sightings where we had four whales surrounding our boat at the same time and sightings where we couldn’t re-locate a whale that had popped up right next to us. It happens.

 

A local celebrity – Scarback. Image captured under NOAA/NMFS permit #21678. Source: Lisa Hildebrand.

 

An ecstatic Lisa with wild hair standing in the bow pulpit of Ruby camera at the ready. Source: Leigh Torres.

Field work is certainly one of my favorite things in the world. The smell of the salt, the rustling of cereal bar wrappers, the whipping of hair, the perpetual rosy noses and cheeks no matter how many times you apply and re-apply sunscreen, the awkward hilarity of clambering onto the back of the boat where the engine is housed to take a potty break, the whooshing sound of a blow, the sometimes gentle and sometimes aggressive rocking of the boat, the realization that you haven’t had water in four hours only to chug half of your water in a few seconds, the waft of peanut butter and jelly sandwiches, the circular footprint where a whale has just gracefully dipped beneath the surface slipping away from view. I don’t think I will ever tire of any of those things.