Current gray whale die-off: a concern or simply the circle of life?

By Leila Lemos, PhD Candidate in Wildlife Sciences, Fisheries and Wildlife Department / OSU

Examination of a dead gray whale found in Pacifica, California, in May 2019.
Source: CNN 2019.

 

The avalanche of news on gray whale deaths this year is everywhere. And because my PhD thesis focuses on gray whale health, I’ve been asked multiple times now why this is happening. So, I thought it was a current and important theme to explore in our blog. The first question that comes to (my) mind is: is this a sad and unusual event for the gray whales that raises concern, or is this die-off event expected and simply part of the circle of life?

At least 64 gray whales have washed-up on the West Coast of the US this year, including the states of California, Oregon and Washington. According to John Calambokidis, biologist and founder of the Cascadia Research Collective, the washed-up whales had one thing in common: all were in poor body condition, potentially due to starvation (Calambokidis in: Paris 2019). Other than looking skinny, some of the whale carcasses also presented injuries, apparently caused by ship strikes (CNN 2019).

Cascadia Research Collective examining a dead gray whale in 9 May 2019, washed up in Washington state. Cause of death was not immediately apparent but appeared consistent with nutritional stress.
Source: Cascadia Research Collective 2019.

To give some context, gray whales migrate long distances while they fast for long periods. They are known for performing the longest migration ever seen for a mammal, as they travel up to 20,000 km roundtrip every year from their breeding grounds in Baja California, Mexico, to their feeding grounds in the Bering and Chukchi seas (Calambokidis et al. 2002, Jones and Swartz 2002, Sumich 2014). Thus, a successful feeding season is critical for energy replenishment to recover from the previous migration and fasting periods, and for energy storage to support their metabolic needsduring the migration and fasting periods that follow. An unsuccessful feeding season could likely result in poor body condition, affecting individual performance in the following seasons, a phenomenon known as the carry-over effect(Harrison et al., 2011).

In addition, environmental change, such as climate variations, might impact shifts in prey availability and thus intensify energetic demands on the whales as they need to search harder and longer for food. These whales already fast for months and spend large energy reserves supporting their migrations. When they arrive at their feeding grounds, they need to start feeding. If they don’t have access to predictable food sources, their fitness is affected and they become more vulnerable to anthropogenic threats, including ship strikes, entanglement in fishery gear, and contamination.

For the past three years, I have been using drone-based photogrammetry to assess gray whale body condition along the Oregon coast, as part of my PhD project. Coincident to this current die-off event, I have observed that these whales presented good body condition in 2016, but in the past two years their condition has worsened. But these Oregon whales are feeding on different prey in different areas than the rest of the ENP that heads up to the Bering Sea to feed. So, are all gray whales suffering from the same broad scale environmental impacts? I am currently looking into environmental remote sensing data such as sea surface temperature, chlorophyll-a and upwelling index to explore associations between body condition and environmental anomalies that could be associated.

Trying to answer the question I previously mentioned “is this event worrisome or natural?”, I would estimate that this die-off is mostly due to natural patterns, mainly as a consequence of ecological patterns. This Eastern North Pacific (ENP) gray whale population is now estimated at 27,000 individuals (Calambokidis in: Paris 2019) and it has been suggested that this population is currently at its carrying capacity(K), which is estimated to be between 19,830 and 28,470 individuals (Wade and Perryman, 2002). Prey availability on their primary foraging grounds in the Bering Sea may simply not be enough to sustain this whole population.

The plot below illustrates a population in exponential growth over the years. The population reaches a point (K) that the system can no longer support. Therefore, the population declines and then fluctuates around this K point. This pattern and cycle can result in die-off events like the one we are currently witnessing with the ENP gray whale population.

Population at a carrying capacity (K)
Source: Conservation of change 2019.

 

According to the American biologist Paul Ehrlich: “the idea that we can just keep growing forever on a finite planet is totally imbecilic”. Resources are finite, and so are populations. We should expect die-off events like this.

Right now, we are early on the 2019 feeding season for these giant migrators. Mortality numbers are likely to increase and might even exceed previous die-off events. The last ENP gray whale die-off event occurred in the 1999-2000 season, when a total of 283 stranded whales in 1999 and 368 in 2000 were found displaying emaciated conditions (Gulland et al. 2005). This last die-off event occurred 20 years ago, and thus in my opinion, it is too soon to raise concerns about the long-term impacts on the ENP gray whale population, unless this event continues over multiple years.

 

References

Calambokidis, J. et al. 2002. Abundance, range and movements of a feeding aggregation of gray whales (Eschrichtius robustus) from California to southeastern Alaska in 1998. Journal of Cetacean research and Management. 4, 267-276.

Cascadia Research Collective (2019, May 10). Cascadia and other Washington stranding network organizations continue to respond to growing number of dead gray whales along our coast and inside waters. Retrieved from http://www.cascadiaresearch.org/washington-state-stranding-response/cascadia-and-other-washington-stranding-networkorganizations?fbclid=Iw AR1g7zc4EOMWr_wp_x39ertvzpjOnc1zZl7DoMbBcjI1Ic_EbUx2bX8_TBw

Conservation of change (2019, May 31). Limits to Growth: the first law of sustainability. Retrieved from http://www.conservationofchange.org/limits

CNN (2019, May 15). Dead gray whales keep washing ashore in the San Francisco Bay area.Retrieved from https://www.cnn.com/2019/05/15/us/gray-whale-deaths-trnd-sci/index.html

Gulland, F. M. D., H. Pérez-Cortés M., J. Urbán R., L. Rojas-Bracho, G. Ylitalo, J. Weir, S. A. Norman, M. M. Muto, D. J. Rugh, C. Kreuder, and T. Rowles. 2005. Eastern North Pacific gray whale (Eschrichtius robustus) unusual mortality event, 1999-2000. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-150, 33 p.

Harrison, X. A., et al., 2011. Carry-over effects as drivers of fitness differences in animals. Journal of Animal Ecology. 80, 4-18.

Jones, M. L., Swartz, S. L., Gray Whale, Eschrichtius robustus. Encyclopedia of Marine Mammals. Academic Press, San Diego, 2002, pp. 524-536.

Paris (2019, May 27). Gray Whales Wash Up On West Coast At Near-Record Levels.Retrieved from https://www.wbur.org/hereandnow/2019/05/27/gray-whales-wash-up-record-levels

Sumich, J. L., 2014. E. robustus: The biology and human history of gray whales. Whale Cove Marine Education.

Wade, P. R., Perryman, W., An assessment of the eastern gray whale population in 2002. IWC, Vol. SC/54/BRG7 Shimonoseki, Japan, 2002, pp. 16.

 

A Weekend of Inspiration in Marine Science: NWSSMM and Dr. Sylvia Earle!

By Karen Lohman, Masters Student in Wildlife Science, Cetacean Conservation and Genomics Lab, Oregon State University

My name is Karen Lohman, and I’m a first-year student in Dr. Scott Baker’s Cetacean Conservation and Genomics Lab at OSU. Dr. Leigh Torres is serving on my committee and has asked me to contribute to the GEMM lab blog from time to time. For my master’s project, I’ll be applying population genetics and genomics techniques to better understand the degree of population mixing and breeding ground assignment of feeding humpback whales in the eastern North Pacific. In other words, I’ll be trying to determine where the humpback whales off the U.S. West Coast are migrating from, and at what frequency.

Earlier this month I joined the GEMM lab members in attending the Northwest Student Society of Marine Mammalogy Conference in Seattle. The GEMM lab members and I made the trip up to the University of Washington to present our work to our peers from across the Pacific Northwest. All five GEMM lab graduate students, plus GEMM lab intern Acacia Pepper, and myself gave talks presenting our research to our peers. I was able to present preliminary results on the population structure of feeding humpback whales across shared feeding habitat by multiple breeding groups in the eastern North Pacific using mitochondria DNA haplotype frequencies. In the end GEMM lab’s Dawn Barlow took home the “Best Oral Presentation” prize. Way to go Dawn!

A few of the GEMM lab members and me presenting our research at the NWSSMM conference in May 2019 at the University of Washington.

While conferences have a strong networking component, this one feels unique.  It is a chance to network with our peers, who are working through the same challenges in graduate school and will hopefully be our future research collaborators in marine mammal research when we finish our degrees. It’s also one of the few groups of people that understand the challenges of studying marine mammals. Not every day is full of dolphins and rainbows; for me, it’s mostly labwork or writing code to overcome small and/or patchy sample size problems.

All of the CCGL and GEMM Lab members excited to hear Dr. Sylvia Earle’s presentation at Portland State University in May 2019 (from L to R: Karen L., Lisa H., Alexa K., Leila L., Dawn B., and Dom K.) . Photo Source: Alexa Kownacki

On the way back from Seattle we stopped to hear the one and only Dr. Sylvia Earle, talk in Portland. With 27 honorary doctorates and over 200 publications, Dr. Sylvia Earle is a legend in marine science. Hearing a distinguished marine researcher talk about her journey in research and to present such an inspiring message of ocean advocacy was a great way to end our weekend away from normal grad school responsibilities. While the entirety of her talk was moving, one of her final comments really stood out. Near the end of her talk she called the audience to action by saying “Look at your abilities and have confidence that you can and must make a difference. Do whatever you’ve got.” As a first-year graduate student trying to figure out my path forward in research and conservation, I couldn’t think of better advice to end the weekend on.

 

Should scientists engage in advocacy?

By Dominique Kone, Masters Student in Marine Resource Management

Should scientists engage in advocacy? This question is one of the most debated topics in conservation and natural resource management. Some experts firmly oppose researchers advocating for policy decisions because such actions potentially threaten the credibility of their science. While others argue that with environmental issues becoming more complex, society would benefit from hearing scientists’ opinions and preferences on proposed actions. While both arguments are valid, we must recognize the answer to this question may never be a universal yes or no. As an early-career scientist, I’d like to share some of my observations and thoughts on this topic, and help continue this dialogue on the appropriateness of scientists exercising advocacy.

Policymakers are tasked with making decisions that determine how species and natural resources are managed, and subsequently affect and impact society. Scientists commonly play an integral role in these policy decisions, by providing policymakers with reliable and accurate information so they can make better-informed decisions. Examples include using stock assessments to set fishing limits, incorporating the regeneration capacity of forests into the timing of timber harvest, or considering the distribution of blue whales in permitting seafloor mining projects. Importantly, informing policy with science is very different from scientists advocating on policy issues. To understand these nuances, we must first define these terms.

A scientist considering engaging in policy advocacy. Source: Karen Brey.

According to Merriam-Webster, informing means “to communicate knowledge to” or “to give information to an authority”. In contrast, advocating means “to support or argue for (a cause, policy, etc.)” (Merriam-Webster 2019). People can inform others by providing information without necessarily advocating for a cause or policy. For many researchers, providing credible science to inform policy decisions is the gold standard. We, as a society, do not take issue with researchers supplying policymakers with reliable information. Rather, pushback arises when researchers step out of their role as informants and attempt to influence or sway policymakers to decide in a particular manner by speaking to values. This is advocacy.

Dr. Robert Lackey is a fisheries & political scientist, and one of the prominent voices on this issue. In his popular 2007 article, he explains that when scientists inform policy while also advocating, a conflict of interest is created (Lackey 2007). To an outsider, it can be difficult to distinguish values from scientific evidence when researchers engage in policy discussions. Are they engaging in these discussions to provide reliable information as an honest scientist, or are they advocating for decisions or policies based on their personal preferences? As a scientist, I like to believe most scientists – in natural resource management and conservation – do not engage in policy decisions for their own benefit, and they truly want to see our resources managed in a responsible and sustainable manner. Yet, I also recognize this belief doesn’t negate the fact that when researchers engage in policy discussions, they could advocate for their personal preferences – whether they do so consciously or subconsciously – which makes identifying these conflicts of interest particularly challenging.

Examples of actions scientists take in conducting and reporting research. Actions on the left represent actions of policy advocacy, those on the right do not, and the center is maybe. This graphic was adapted from a policy advocacy graphic from Scott et al. 2007. Source: Jamie Keyes.

It seems much of the unease with researchers exercising advocacy has to do with a lack in transparency about which role the researcher chooses to play during those policy debates. A simple remedy to this dilemma – as Lackey suggested in his paper – could be to encourage scientists to be completely transparent when they are about to inform versus advocate (Lackey 2007). Yet, for this suggestion to work, it would require complete trust in scientists to (1) verbalize and make known whether they’re informing or advocating, and (2) when they are informing, to provide credible and unbiased information. I’ve only witnessed a few scientists do this without ensuing some skepticism, which unfortunately highlights issues around an emerging mistrust of researchers to provide policy-neutral science. This mistrust threatens the important role scientists have played in policy decisions and the relationships between scientists and policymakers.

While much of this discussion has been focused on how researchers and their science are received by policymakers, researchers engaging in advocacy are also concerned with how they are perceived by their peers within the scientific community. When I ask more-senior researchers about their concerns with engaging in advocacy, losing scientific credibility is typically at or near the top of their lists. Many of them fear that once you start advocating for a position or policy decision (e.g. protected areas, carbon emission reduction, etc.), you become known for that one cause, which opens you up to questions and suspicions on your ability to provide unbiased and objective science. Once your credibility as a scientist comes into question, it could hinder your career.

How it sometimes feels when researchers conduct policy-relevant science. Source: Justin DeFreitas.

Conservation scientists are faced with a unique dilemma. They value both biodiversity conservation and scientific credibility. Yet, in some cases, risk or potential harm to a species or ecosystem may outweigh concerns over damage to their credibility, and therefore, may choose to engage in advocacy to protect that species or ecosystem (Horton 2015). Horton’s explanation raises an important point that researchers taking a hands-off approach to advocacy may not always be warranted, and that a researcher’s decision to engage in advocacy will heavily depend on the issue at hand and the repercussions if the researcher does not advocate their policy preferences. Climate change is a great example, where climate scientists are advocating for the use of their science, recognizing the alternative could mean continued inaction on carbon emission reduction and mitigation. [Note: this is called science advocacy, which is slightly different than advocating personal preferences, but this example helps demonstrate my point.]

To revisit the question – should scientists engage in advocacy? Honestly, I don’t have a clear answer, because there is no clear answer. This topic is one that has so many dimensions beyond the few I mentioned in this blog post. In my opinion, I don’t think researchers should have an always yes or always no stance on advocacy. Nor do I think every researcher needs to agree on this topic. A researcher’s decision to engage in advocacy will all depend on context. When faced with this decision, it might be useful to ask yourself the following questions: (1) How much do policymakers trust me? (2) How will my peers perceive me if I choose to engage? (3) Could I lose scientific credibility if I do engage? And (4) What’s at stake if I don’t make my preferences known? Hopefully, the answers to these sub-questions will help you decide whether you should advocate.

References:

Horton, C. C., Peterson, T. R., Banerjee, P., and M. J. Peterson. 2015. Credibility and advocacy in conservation science. Conservation Biology. 30(1): 23-32.

Lackey, R. T. 2007. Science, Scientists, and Policy Advocacy. Conservation Biology. 21(1): 12-17.

Scott et al. (2007). Policy advocacy in science: prevalence, perspectives, and implications for conservation biologists. Conservation Biology. 21(1): 29-35.

Merriam-Webster. 2019. Retrieved from < https://www.merriam-webster.com/ >

Marine Mammal Observing: Standardization is key

By: Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

For the past two years, I’ve had the opportunity to be the marine mammal observer aboard the NOAA ship Bell M. Shimada for 10 days in May. Both trips covered transects in the Northern California Current Ecosystem during the same time of year, but things looked very different from my chair on the fly bridge. This trip, in particular, highlighted the importance of standardization, seeing as it was the second replicate of the same area. Other scientists and crew members repeatedly asked me the same questions that made me realize just how important it is to have standards in scientific practices and communicating them.

Northern right whale dolphin porpoising out of the water beside the ship while in transit. May 2019. Image source: Alexa Kownacki

The questions:

  1. What do you actually do here and why are you doing it?
  2. Is this year the same as last year in terms of weather, sightings, and transect locations?
  3. Did you expect to see greater or fewer sightings (number and diversity)?
  4. What is this Beaufort Sea State scale that you keep referring to?

All of these are important scientific questions that influence our hypothesis-testing research, survey methods, expected results, and potential conclusions. Although the entire science party aboard the ship conducted marine science, we all had our own specialties and sometimes only knew the basics, if that, about what the other person was doing. It became a perfect opportunity to share our science and standards across similar, but different fields.

Now, to answer those questions:

  1. a) What do you actually do here and b) why are you doing it?

a) As the only marine mammal observer, I stand watch during favorable weather conditions while the ship is in transit, scanning from 0 to 90 degrees off the starboard side (from the front of the ship to a right angle towards the right side when facing forwards). Meanwhile, an application on an iPad called SeaScribe, records the ship’s exact location every 15 seconds, even when no animal is sighted. This process allows for the collection of absence data, that is, data when no animals are present. The SeaScribe program records the survey lines, along with manual inputs that I add, including weather and observer information. When I spot a marine mammal, I immediately mark an exact location on a hand held GPS, use my binoculars to identify the species, and add information to the sighting on the SeaScribe program, such as species, distance to the sighted animal(s), the degree (angle) to the sighting, number of animals in a group, behavior, and direction if traveling.

b) Marine mammal observing serves many different purposes. In this case, observing collects information about what species are where at what time. By piggy-backing on these large-scale, offshore oceanographic NOAA surveys, we have the unique opportunity to survey along standardized transect lines during different times of the year. From replicate survey data, we can start to form an idea of which species use which areas and what oceanographic conditions may impact species distributions. Currently there is not much consistent marine mammal data collected over these offshore areas between Northern California and Washington State, so our work is aiming to fill this knowledge gap.

Alexa observing on the R/V Shimada in May 2019, all bundled up. Image Source: Alexa Kownacki
  1. What is this Beaufort Sea State scale that you keep referring to?

Great question! It took me a while to realize that this standard measuring tool to estimate wind speeds and sea conditions, is not commonly recognized even among other sea-goers. The Beaufort Sea State, or BSS, uses an empirical scale that ranges from 0-12 with 0 being no wind and calm seas, to 12 being hurricane-force winds with 45+ ft seas. It is frequently referenced by scientists in oceanography, marine science, and climate science as a universally-understood metric. The BSS was created in 1805 by Francis Beaufort, a hydrographer in the Royal Navy, to standardize weather conditions across the fleet of vessels. By the mid-1850s, the BSS was standardized to non-naval use for sailing vessels, and in 1916, expanded to include information specific to the seas and not the sails1. We in the marine mammal observation field constantly collect BSS information while on survey to measure the quality of survey conditions that may impact our observations. BSS data allows us to measure the extent of our survey range, both in the distance that we are likely to sight animals and also the likelihood of sighting anything. Therefore, the BSS scale gives us an important indication of how much absence data we have collected, in addition to presence data.

A description of the Beaufort Sea State Scale. Image source: National Weather Service.

 

  1. Is this year the same as last year in terms of weather, sightings, and transect locations?

The short answer is no. Observed differences in marine mammal sightings in terms of both species diversity and number of animals between years can be normal. There are many potential explanatory variables, from differences in currents, upwelling strength, El Nino index levels, water temperatures, or, what was obvious in this case: sighting conditions. The weather in May 2019 varied greatly from that in May 2018. Last year, I observed for nearly every day because the Beaufort Sea State (BSS) was frequently less than a four. However, this year, more often than not, the BSS greater than or equal to five. A BSS of 5 equates to approximately 17-21 knots of breeze with 6-foot waves and the water appears to have many “white horses” or pronounced white caps with sea spray. Additionally, mechanical issue with winches delayed and altered our transect locations. Therefore, although multiple transects from May 2018 were also surveyed during May 2019, there were a few lines that do not have data for both cruises.

May 2018 with a BSS 1
May 2019 with a BSS 6

 

 

 

 

 

  1. Did you expect to see greater or fewer sightings (number and diversity)?

Knowing that I had less favorable sighting conditions and less amount of effort observing this year, it is not surprising that I observed fewer marine mammals in total count and in species diversity. Even less surprising is that on the day with the best weather, where the BSS was less than a five, I recorded the most sightings with the highest species count. May 2018 felt a bit like a tropical vacation because we had surprisingly sunny days with mild winds, and during May 2019 we had some rough seas with gale force winds. Additionally, as an observer, I need to remove as much bias as possible. So, yes, I had hoped to see beaked whales or orca like I did in May 2018, but I was still pleasantly surprised when I spotted fin whales feeding in May 2019.

Marine Mammal Species Number of Sightings
May 2018 May 2019
Humpback whale 31 6
Northern right whale dolphin 1 2
Pacific white-sided dolphin 3 6
UNID beaked whale 1 0
Cuvier’s beaked whale 1 0
Gray whale 4 1
Minke whale 1 1
Fin whale 4 1
Blue whale 1 0
Transient killer whale 1 0
Dall’s porpoise 2 0
Northern fur seal 1 0
California sea lion 0 1
Pacific white-sided dolphin. Image source: Alexa Kownacki

Standardization is a common theme. Observing between years on standard transects, at set speeds, in different conditions using standardized tools is critical to collecting high quality data that is comparable across different periods. Scientists constantly think about quality control. We look for trends and patterns, similarities and differences, but none of those could be understood without having standard metrics.

The entire science party aboard the R/V Shimada in May 2019, including a marine mammal scientist, phytoplankton scientists, zooplankton scientists, and fisheries scientists, and oceanographers. Image Source: Alexa Kownacki

Literature Cited:

1Oliver, John E. (2005). Encyclopedia of world climatology. Springer.

 

 

Sea lions eat prey bigger than their heads

By Rachael Orben, Assistant Professor (Senior Research), Seabird Oceanography Lab

There aren’t that many Steller sea lions that call the Pribilof Islands home. The way I learned to spot them, was to watch for excited groups of kittiwakes materializing out of nowhere, just off-shore. The kittiwakes circle, periodically dipping down to grab something from the water. Then a sea lion head emerges from the water and more often than not, the lion would have a flatfish. The sea lion whips the fish back and forth, splashing and causing pieces to break off. The kittiwakes drop down and pick up the little bits. The black-legged kittiwakes that we were tracking with GPS dataloggers often flew in laps around the island (Paredes et al. 2012, 2014); stopping at the outflow of the fish processing plant, and perhaps, also on the lookout for foraging Steller sea lions to pick up an extra snack.

A Steller’s sea lion with a small flock of kittiwakes viewed from the cliffs of St. George Island. Photo: R. Orben

Gape limitation

At first glance, one might assume that sea lions are gape-limited. What do I mean by this? Basically, gape limitation means that predators can’t consume anything that doesn’t fit into their mouths whole. This idea is typically considered in the context of fish but does come up in seabird and marine mammal ecology from time-to-time. Specifically, when a predator doesn’t have a method for pulling its prey apart so is required to consume it whole. For instance, seabirds that feed their chicks whole fish can encounter this problem (e.g. puffins, terns, murres). Small chicks can starve if parents are bringing back fish that are too large to fit into the gape of the chick.

Gape limitation of cartoon fishes. Art: R. Orben

Sea lions and their eclectic large prey

I don’t know if the flatfish consumed by the Steller sea lions are too large to be swallowed whole. But, I do know that they use a strategy known as ‘shake feeding’ (Kienle et al. 2017). This feeding style is important as it offers the behavioral mechanism that allows sea lions to consume prey that exceeds their gape limitations. When sea lions are observed eating large prey it often occurs in surprising circumstances, but I suspect this foraging tactic is fairly common (e.g. Hocking et al. 2016). I have compiled a few examples both from the scientific literature and the internet to see.

Observations

Galapagos sea lions and tuna. This example is amazing and features Galapagos sea lions working together to herd tuna into shallow lagoons. Compared to the sea lions, the tuna are large! (When you are done looking at the amazing photos please return and finish reading my blog.)

Besides the flatfish I observed Steller’s sea lions eating, there is an observation of a Steller catching a shark (the online photo account stops before the shark is consumed so I don’t know what happened) and catching and consuming northern fur seal pups (Gentry & Johnson, 1981).

Gentry & Johnson 1981, include a particularly gruesome description of the predation events: “Fur seal young most often were caught by the abdomen and eviscerated with a sideways shake of the sea lion’s head (in the same manner used to tear apart large fish). Sea lions most often dived with the prey still moving and surfaced father offshore, usually beyond the kelp beds, with the pup motionless. …Larger sea lions broke apart their prey under water, surfacing only to swallow large bits of tissue. Smaller sea lions vigorously shook the carcass at the surface using the same sideways snapping motion used to eviscerate the pup at capture.”

Photo of a Steller Sea Lion and its prey: a northern fur seal pup. Photo: Gentry & Johnson 1981.

I found a fascinating series of photographs of a California Sea Lion and a Mola Mola. It is a little hard to tell what is going on, but the photographer has labeled his photos “A California Sea Lion kills, and eats, a Mola Mola”.

Southern sea lions consume large prey in the form of penguins and more surprisingly fur seals. Thus far these observations are limited to males.

Eating octopus

Sea lions also use shake feeding to consume octopus. Though an octopus might be smalled enough to be eaten in one gulp, they are a smart and agile prey whose tentacles make them harder to swallow. I have seen Southern sea lions flipping octopus at the surface using the ‘shake feeding’ mode. Once I watched a young juvenile bring one ashore to eat (photos below). Perhaps foraging on octopus offers some opportunities for learning how to eat large prey?

References

Gentry, R. L., & Johnson, J. H. (1981). Predation by sea lions on northern fur seal neonates. Mammalia, 45(4), 423–430. http://doi.org/10.1515/mamm.1981.45.4.423

Hocking DP, Ladds MA, Slip DJ, Fitzgerald EMG, Evans AR (2016) Chew, shake, and tear: Prey processing in Australian sea lions (Neophoca cinerea). Marine Mammal Sci 33:541–557

Kienle SS, Law CJ, Costa DP, BERTA A, Mehta RS (2017) Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc Biol Sci 284:20171035–4

Paredes R, Harding AMA, Irons DB, Roby DD, Suryan RM, Orben RA, Renner HM, Young R, Kitaysky AS (2012) Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar Ecol Prog Ser 471:253–269

Paredes R, Orben RA, Suryan RM, Irons DB, Roby DD, Harding AMA, Young RC, Benoit-Bird KJ, Ladd C, Renner H, Heppell S, Phillips RA, Kitaysky AS (2014) Foraging Responses of Black-Legged Kittiwakes to Prolonged Food-Shortages around Colonies on the Bering Sea Shelf. PLoS ONE 9:e92520

The “demon whale-biter”, and why I am learning about an elusive little shark

By Dawn Barlow, PhD student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

There is an ancient Samoan legend that upon entry into a certain bay in Samoa, tuna would sacrifice pieces of their flesh to the community chief1. This was the explanation given for fish with circular shaped wounds where a plug of flesh had been removed. Similar round wounds are also observed on swordfish2, sharks3, and marine mammals including whales4,5, dolphins6, porpoises7, and pinnipeds8,9. In 1971, Everet C. Jones posited that the probable cause of these crater wounds was a small shark only 42-56 cm in length, Isistius brasiliensis1. The species was nicknamed “demon whale-biter” by Stewart Springer, who subsequently popularized the common name for the species, cookie cutter shark.

Figure 1. A yellowfin tuna with a circular bite, characteristic of a cookie cutter shark (Isistius brasiliensis). Photo: John Soward.

I am currently preparing a manuscript on blue whale skin condition. While this is only tangentially related to my doctoral research, it is an exciting side project that has encouraged me to stretch my comfort zone as an ecologist. This analysis of skin condition is part of a broader health assessment of blue whales in New Zealand, where we will be linking skin lesion severity with stress and reproductive hormone levels as well as body condition. Before I continue, I owe a major shout-out to Acacia Pepper, a senior undergraduate student at Oregon State University who has been working with me for nearly the past year through the Fisheries and Wildlife mentorship program. Acacia’s rigor in researching methodologies led us to develop a comprehensive protocol that can be applied widely to any cetacean photo-identification catalog. This method allows us to quantify prevalence and severity of different marking types in a standardized manner. Her passion for marine mammal science and interest in the subject matter is enough to excite this ecologist into fascination with wound morphology and blister concavity. Next thing you know, we are preparing a paper for publication together with P.I. Dr. Leigh Torres on a comprehensive skin condition assessment of blue whales that includes multiple markings and lesion types, but for the purpose of this blog post, I will share just a “bite-sized” piece of the story.

Figure 2. Jaws of a cookie cutter shark. Photo: George Burgess.

Back to the demon whale-biter. What do we know about cookie cutter sharks? Not a whole lot, it turns out. They are elusive, and are thought to live in deep (>1,000 m), offshore waters. They are considered to be both an ectoparasite and an ambush predator. Their distribution is tropical and sub-tropical. Much of what we know and assume about their distribution comes from the bite wounds they leave on their prey2.

In New Zealand where we study a unique population of blue whales10, the southernmost record of cookie cutter sharks is ~ 39⁰S11. We found that in our dataset of 148 photo-identified blue whales, 96% were affected by cookie cutter shark bites. Furthermore, 38% were categorized as having “severe” cookie cutter bite wounds or scars. The latitude of our blue whale sightings ranges from 29-48⁰S and blue whales are highly mobile, so any of the whales in our dataset could theoretically swim in and out of the known range of cookie cutter sharks. In our skin condition assessment, we also categorized cookie cutter bite “freshness” and phase of healing as follows:

We wanted to know if the freshness of cookie cutter shark bites was related in to the latitude at which the whales were photographed. Of the whales photographed north of 39⁰S (n=46), 76% had phase 1 or 2 cookie cutter shark bites present. In contrast, 57.1% of whales photographed south of 39⁰S (n=133) had phase 1 or 2 cookie cutter shark bites. It therefore appears that in New Zealand, the freshness of cookie cutter shark bites on blue whales is related to the latitude at which the whales were sighted, with fresher bites being more common at more northerly latitudes.

Figure 3. A whale with fresh cookie cutter shark bites, photographed in the Bay of Islands, latitude 35.164⁰S. Photo courtesy of Dr. Catherine Peters.
Figure 4. A whale with mostly healed cookie cutter shark bites, photographed off of Kaikoura, latitude 42.464⁰S. Photo courtesy of Jody Weir.

In the midst of a PhD on distribution modeling and habitat use of blue whales, I find myself reading about Samoan legends of tuna with missing flesh and descriptions of strange circular lesions from whaling records, and writing a paper about blue whale skin condition. Exciting “side projects” like this one emerge from rich datasets and good collaboration.

References

  1. Jones, E. C. Isistius brasiliensis, a squaloid shark, the probable cause of crater wounds on fishes and cetaceans. Fish. Bull. 69, 791–798 (1971).
  2. Papastamatiou, Y. P., Wetherbee, B. M., O’Sullivan, J., Goodmanlowe, G. D. & Lowe, C. G. Foraging ecology of Cookiecutter Sharks (Isistius brasiliensis) on pelagic fishes in Hawaii, inferred from prey bite wounds. Environ. Biol. Fishes 88, 361–368 (2010).
  3. Hoyos-Padilla, M., Papastamatiou, Y. P., O’Sullivan, J. & Lowe, C. G. Observation of an Attack by a Cookiecutter Shark ( Isistius brasiliensis ) on a White Shark ( Carcharodon carcharias ) . Pacific Sci. 67, 129–134 (2013).
  4. Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Discov. Reports 1, 257–540 (1929).
  5. Best, P. B. & Photopoulou, T. Identifying the ‘demon whale-biter’: Patterns of scarring on large whales attributed to a cookie-cutter shark Isistius sp. PLoS One 11, (2016).
  6. Heithaus, M. R. Predator-prey and competitive interactions between sharks (order Selachii) and dolphins (suborder Odontoceti): A review. J. Zool. 253, 53–68 (2001).
  7. Van Utrecht, W. L. Wounds And Scars In The Skin Of The Common Porpoise, Phocaena Phocaena (L.). Mammalia 23, 100–122 (1959).
  8. Gallo‐Reynoso, J. ‐P & Figueroa‐Carranza, A. ‐L. A COOKIECUTTER SHARK WOUND ON A GUADALUPE FUR SEAL MALE. Mar. Mammal Sci. 8, 428–430 (1992).
  9. Le Boeuf, B. J., McCosker, J. E. & Hewitt, J. Crater wounds on northern elephant seals: the cookiecutter shark strikes again. Fish. Bull. 85, 387–392 (1987).
  10. Barlow, D. R. et al. Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40 (2018).
  11. Dwyer, S. L. & Visser, I. N. Cookie cutter shark (Isistius sp.) bites on cetaceans, with particular reference to killer whales (Orca) (Orcinus orca). Aquat. Mamm. 37, 111–138 (2011).

Digging to uncover the roots of scientific writing and publication: how much (if anything) has changed?

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

In our most recent lab meeting, the GEMM lab discussed a recent paper about how blue whale migrations may be driven by memory and resource tracking (Abrahms et al. 2019). Most of our discussion was about the choices made by the authors in terms of their analyses used and the figures produced, as Leigh always pushes us graduate students to think critically about the scientific papers we read. However, a portion of our discussion focused less on the actual science behind the paper, but more on the language used. This change in direction was initiated by myself as I mentioned how much I liked the phrase “goldilocks zone”, which the authors used to describe an area between 15-17ºC that blue whales tended to occupy for the majority of the annual migration cycle.

The classic goldilocks tale vs. the blue whale version of goldilocks. Source: Slideshare.

What I liked so much about using this phrase was that the authors were using a childhood fairy tale that probably every 5-year old kid knows of to explain some pretty complex science and analysis. Our team then proceeded to go down a rabbit-hole for
a few minutes where we discussed uses of creative words in scientific writing. Although during our meeting we got back on track quite quickly, my mind has still continued down this rabbit-hole for quite some time. I started to wonder about the origins of scientific publication, when and why the structure and style of writing became so rigid, and when and why authors have decided to become a little more creative or colloquial in their writing since then. So, sit back and delve into the history of scientific writing with me…

Humankind has made scientific observations for thousands of years. Perhaps the earliest known culture to have done this are the Mesopotamian peoples who recorded observations of their surroundings around 3,500 BC in Sumer, which is now known as Iraq (Rochberg 2004). Most of the observations relate to astronomy, however there is some evidence to suggest that the Mesopotamians had recognized the existence of Pythagorean triplets (3, 4, 5; 5, 12, 13), long before Pythagoras himself was alive (Hoffman 1999).

However, formal publication of scientific observations is still a relatively new occurrence compared to when the Mesopotamians first started to note down their observations since such documentation of science first occurred in 1665. Interestingly, the birth of scientific publication was achieved by not one journal, but two; Journal des Sçavans in France and Philosophical Transactions of the Royal Society in London. Even though Journal des Sçavans beat out Philosophical Transactions of the Royal Society by publishing its first journal two months before the other, it ultimately lost the fight since it ceased publication in 1792, whereas Philosophical Transactions of the Royal Society is still in print, making it the world’s longest running scientific journal.

 

Journal covers for the first editions of Journal des Sçavans and Philosophical Transactions of the Royal Society from 1665. Source: Wikipedia.

Early publications were descriptive by nature. Instead of planning experiments, carrying them out, detailing results and interpreting them, authors described observations they made about their surroundings. An example is by a certain Mr. R.W. S.R.S from 1693. The opening lines of his publication entitled ‘Some Observations in the Dissection of a Ratt’ are as follows:

“The fore-feet of a Rat resemble those of the Castor. The Hair is also some fine, some course; as in that Animal. The Tail scaly, with Hairs between every Scale, like the Castors, which shews these two Animals to be something akin; and indeed the Water-Rat comes very near to the Beaver, and makes it’s Holes in the bank-sides of Ponds after the same manner.”

While not all publications were as purely descriptive as this example, those that did undertake experiments discussed them in a very chronological and almost basic manner. An example is by Allen Moulen in his publication ‘Some experiments on a black shining sand brought from Virginia, suppos’d to contain iron, made in March 1689’. An excerpt of the paper is as follows:

“6. I flux’d another parcel of it with Salt-Peter and Flowers of Brimstone, without being able to procure any Regulus. 7. I pour’d good Spirit of Salt on a parcel of this Sand, but could observe no Luctation thereby produc’d. 8. I pour’d Spirit of Nitre both strong and weakned with Water on parcels of the same Sand, without being able to discover any Conflict.”

Publications continued to be written in this nature for quite some time, however by the second half of the 19th century, science and the publication thereof distinctly changed and a lot of this can be credited to Louis Pasteur.

Louis Pasteur. Source: Wikipedia.

When Pasteur first had breakthroughs that provided evidence for the germ theory of disease, he was met by a lot of criticism by fellow scientists that were firm believers in the theory of spontaneous generation. As a way to prove that he was right, Pasteur started to document his experiments in extreme detail. This situation and Pasteur’s recognition of the importance of methodology resulted in the idea of reproducibility and essentially in the IMRaD structure we still follow today.

IMRaD stands for Introduction, Methods, Results and Discussion, which for scientists nowadays is probably as comforting as a cuddly blanket or a hot chocolate on a cold day. We find comfort in this structure because in a way it makes writing scientific papers less daunting because it tells us exactly what we need to do. It’s like a checklist with boxes that we can neatly tick off as we fill in the details of each section.

While IMRaD was first initiated during Pasteur’s era, it became widely adopted in the late 1950s when there was a strong boost in scientific output as more money was being funneled to the sciences. The result of this boost was strong pressure on scientific journals and their editors as authors were submitting papers at a never before seen rate. In an effort to keep up with the influx of submissions, editors felt the need to become more stringent and so enforced strict rules on article length, organization and structure, in order to weed out papers that didn’t make the cut right off the bat. This included IMRaD becoming more widely used in journals as a way to bring conformity to the sciences. This resulted in strong pressure on authors to be concise in their writing, which means that there isn’t much room for creativity.

The topic of creativity in scientific writing has long been debated and many suggest that the writing style in publications should be as objective and frank as possible in order to avoid masking the science (Massoudi 2003). However, it has also been suggested by many that by limiting the creativity in scientific writing, you might actually be limiting the creativity going into the scientific process (Bohm & Peat 1987). While I do believe that objectivity and clarity in scientific writing is important, I do not see the harm in authors trying to be a little creative in the communication of their work. Sir Peter Medawar, a Nobel Prize winning biologist summed up this sentiment very nicely in his book ‘Advice to a Young Scientist’ published in 1979:

“Scientists are people of very dissimilar temperaments doing different things in very different ways. Among scientists are collectors, classifiers and compulsive tidier-up; many are detectives by temperament and many are explorers; some are artists and others artisans. There are poet-scientists and philosopher-scientists and even a few mystics. What sort of mind or temperament can all these people be supposed to have in common? Obligative scientist must be very rare, and most people who are in fact scientists could easily have been something else instead.”

I don’t know whether there is a right or a wrong answer on this matter. What I do know though is that I always give an emphatic nod of approval when I see a word not typically seen in scientific writing used creatively in a scientific publication and it often conjures a smile on my face and makes the paper more memorable to me.

It’s interesting to muse about the direction in which scientific writing is heading now. We are still seeing a proliferation in papers that are being submitted and published, and journals being established. However, I think we are starting to see a shift in how strict scientists are in the language that they use for their publications. That is not to say that manuscripts are now submitted filled with colloquialisms, poor grammar and punctuation, but I think there is a certain flexibility in how much creativity can be incorporated into publications. The extent of this flexibility is, I believe, still largely dependent on the journal. Journals that provide very limited word count and space on the page for a publication, like Nature for example, may limit the creative capabilities of authors. However, some of the more “liberal” journals (liberal in terms of length and space), like PLoS ONE, may allow authors to explore their creative writing abilities to a greater extent. In my personal opinion, I would quite like to see more authors take creative risks in their writing.

 

References

Abrahms, B., et al., Memory and resource tracking drive blue whale migrations. PNAS, 2019. 116(12): 5582-5587.

Bohm, D., & Peat F.D. Science, Order, and Creativity.1987. Bantam Books, New York City.

Hoffman, P. The Man Who Loved Numbers: The Story of Paul Erdos and the Search for Mathematical Truth. 1999. Hyperion Books, New York City.

Massoudi, M. Can scientific writing be creative? Journal of Science Education and Technology, 2003. 12(2): 115-128.

Medawar, P. Advice to a Young Scientist. 1979. Basic Books, New York City.

Moulen, A. Some experiments on a black shining sand brought from Virginia, suppos’d to contain iron, made in March 1689. By Allen Moulen, M.D. and Fellow of the Royal Society, since dead. Philosophical Transactions of the Royal Society, 1693. 17: doi.org/10.1098/rstl.1693.0009.

Rochberg, F. The Heavenly Writing: Divination, Horoscopy, and Astronomy in Mesopotamian Culture. 2004. Cambridge University Press, Cambridge.

S.R.S., R.W. Some observations in the dissection of a ratt, communicated by Mr. R.W. S.R.S.Philosophical Transactions of the Royal Society, 1693. 17: doi.org/10.1098/rstl.1693.0006.

Knowing me, knowing you: the fate of the toninha, a small dolphin endemic to the Western South Atlantic

By Salvatore Siciliano (1,2)

(1) Laboratório de Enterobactérias, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
(2) Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos)

 

 

Background information on Pontoporia blainvillei

The toninha (Pontoporia blainvillei) as it is called in Brazil, or franciscana (Fig.01), is a small dolphin endemic to coastal waters of southeastern and southern Brazil, Uruguay and Argentina. It is the only representative of an ancient lineage of odontocetes, once widely spread over the Pacific and Atlantic oceans. Toninhas occur in waters shallower than 30 m and present a discontinuous distribution from Itaúnas, Brazil (18º 25’S) to Golfo San Matías, Argentina (42º 10’S). The species is considered one of the most threatened small cetaceans in South America due to high, and possibly unsustainable, bycatch levels as well as increasing habitat degradation. Incidental catches in fishing gear, especially gillnets and trammel nets, have been reported along most of the species’ range since at least the 1940s. Other rapidly-increasing conservation issues of significant importance for the franciscana in this region include: (1) habitat degradation, (2) underwater noise, (3) chemical pollution from industrial and urban wastewater, (4) activities related to the exploration and production of oil and gas, and (5) vessel traffic. P. blainvilleiis currently listed as ‘Vulnerable’ in the IUCN Red List of Threatened Species and ‘Critically Endangered’ by the Brazilian Government.

 

Figure 01: A young Pontoporia blainvillei incidentally caught in gillnets set off the northern coast of the state of Rio de Janeiro, Brazil (December 2011).

 

In order to guide conservation and management actions on a regional basis, the franciscana range was divided into four zones, known as ‘Franciscana Management Areas’ (FMAs), in the early 2000s. FMA I includes Espírito Santo (ES) and northern Rio de Janeiro (RJ), states located in southeastern Brazil. FMA II corresponds to southern RJ, São Paulo (SP), Paraná (PR) and northern Santa Catarina (SC) states, in southeastern and southern Brazil. FMA III encompasses southern SC and Rio Grande do Sul (RS) states, in southern Brazil, in addition to Uruguay. The last FMA, the FMA IV, corresponds to the Argentina coast (Fig.02).

The absence of stranded or incidentally killed animals indicates a gap of approximately 320 km in the franciscana distribution between northern and southern RJ. This gap separates the southern border of FMA I and the northern border of FMA II.

 

Figure 02: The FMA areas (in blue) in P. blainvillei distribution range, and the gaps (in white) in toninha distribution along the Northern limit of its distribution in Southeastern Brazil.

 

The toninha is usually very shy and, for this reason, quite difficult to be seen in the wild. More recently, researchers and citizen science projects have succeeded in obtaining very nice pictures of these animals (Fig.03), which are aiding in elucidating the species mysterious behavior, feeding activity and their preferred habitat conditions.

Figure 03: Toninhas in their natural environment along shallow waters off northern São Paulo state, in the summer of 2019. Photo courtesy of Júlio Cardoso, Baleia à Vista Project.

 

Figure 04: Aerial view of the Restinga de Jurubatiba National Park and its adjacent waters, the main toninha habitat along the northern coast of Rio de Janeiro. Photo by Salvatore Siciliano (November 2017).

 

Threats to P. blainvillei along the Brazilian coast

Gillnets are still the main cause of toninha mortality along its entire range. They can be used at the surface or placed at the bottom of the ocean to catch fish, but these nets also entangle this small dolphin (Fig.05, Fig.06).

Figure 05: Gillnets, used at the surface or placed at the bottom of the ocean.

 

Figure 06: Data on gillnet incidental captures of toninhas (Pontoporia blainvillei) along the northern coast of Rio de Janeiro state collected since1988. Note the concentration of records in the Macaé – Quissamã and Cabo de São Thomé areas, adjacent to the Restinga de Jurubatiba National Park. Data on captures come from Prof. Ana Paula M. Di Beneditto/CBB/LCA/UENF.

 

Toninhas also face other threats along the Brazilian coast, including environmental chemical contamination by metals and persistent organic pollutants. These pollutants are persistent in the aquatic ecosystem and may accumulate and magnify throughout the tropic chain, causing deleterious effects in the aquatic fauna. Recently, an ecotoxicological assessment from our research group (GEMM-Lagos/Fiocruz) verified, for the first time, significant intracellular concentrations of several toxic metals, such as Hg and Pb (Fig.07), in P. blainvillei individuals sampled along the coast of the Rio de Janeiro state.

 

Figure 07: Novel HPLC-ICP-MS data on intracellular Pb and Hg in P. blainvillei liver (L), muscle (M) and kidney (K) samples from stranded individuals sampled off the coast of Rio de Janeiro, Brazil.

 

The monitoring of the contaminant levels in toninhas will potentially aid in conservation efforts, as we can identify which metals are of the most concern, because the intracellular presence of toxic metals indicates high bioavailability, probably leading to deleterious effects.

 

Conservation Efforts

What is a Whale Heritage Site (WHS) and why we are proposing ‘Mosaic Jurubatiba’ as a WHS?

Situated on the Northern coast of Rio de Janeiro state, Brazil, the Jurubatiba region (Fig.04; Fig.08) is now a Candidate Whale Heritage Site (WHS). The area has been termed ‘Mosaic Jurubatiba’ as the candidate site includes not only the Jurubatiba National Park, but also encompasses other significant sites for conservation along the central-north coast that lie across three municipalities: Macaé, Carapebus and Quissamã (Fig.08).

Figure 08: Proposed extension of the Jurubatiba National Park to the adjacent waters, home of a vigorous population of P. blainvillei.
Legend: green – Jurubatiba National Park; red – new terrestrial limit; yellow – new marine limit.

 

The location provides habitat to a diversity of wildlife. When considering cetaceans, the most regularly seen individuals are the humpback whales, the Guiana dolphins and the toninhas. This is an important site since it is part of the migration route of humpback whales from their breeding and calving grounds, in warm tropical waters, to their feeding grounds, in Antarctica. In addition, this locality is a significant habitat for the toninha, a restricted range species, and the Guiana dolphin, a data deficient species and, therefore, of great concern. The importance of the site becoming a fully accredited WHS is, therefore, evident to further conserve these species and their habitats.

There is a significant amount of active conservation in the Jurubatiba National Park. The Park is the first to exclusively comprise the Restinga ecosystem. Researchers worked alongside authorities and large organizations, such as IBAMA (Brazilian Ministry of Environment and the federal government), to achieve its national park status.

Figure 09: Outreach material produced for the campaign ‘Mosaic Jurubatiba’ to promote education and conservation of the Toninha.

 

In Quissamã, warning signs were placed along the beaches to alert the population of the importance of the coastal waters as habitat for dolphin species, especially the toninha. This type of cooperation and support of the government and other authorities will aid the candidate site to achieve a full status of WHS.

The long-term goals of the candidate site are to influence the transition away from fishing as a livelihood and to instead embrace the use of responsible tourism to make a living.

 

For more information on Whale Heritage Sites around the world, visit:

http://worldcetaceanalliance.org/

http://whaleheritagesites.org/candidate-site-jurubatiba/

 

For more information on the GEMM-Lagos Project:

contact:gemmlagos@gmail.com

visit their Instagram: toninha_cade_vc

 

Here you can also find a list of some of the Salvatore Siciliano’s publications on Pontoporia blainvillei:

  • Siciliano S, de Moura JF, Tavares DC, Kehrig HA, Hauser-Davis RA, Moreira I, Lavandier R, Lemos LS, EMin-Lima R, Quinete N. 2018. Legacy Contamination in Estuarine Dolphin Species From the South American Coast. In book: Marine Mammal Ecotoxicology. Eds. Fossi MC, Panti C. Publisher: Academic Press.
  • Baptista G, Kehrig HA, Di Beneditto APM, Hauser-Davis RA, Almeida MG, Rezende CE, Siciliano S, de Moura JF and Moreira I. 2016. Mercury, selenium and stable isotopes in four small cetaceans from the Southeastern Brazilian coast: Influence of feeding strategy. Environmental Pollution 218:1298-1307.
  • Frainer G, Siciliano S, Tavares DC. 2016. Franciscana calls for help: the short and long-term effects of Mariana’s disaster on small cetaceans of South-eastern Brazil. International Whaling Commission SC/66b/SM/04. Bled, Slovenia.
  • Lavandier R, Arêas J, Quinete N, de Moura JF, Taniguchi S, Montone RC, Siciliano S, Moreira I. 2015. PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast. Environmental Pollution 208.
  • Lemos LS, de Moura JF, Hauser-Davis RA, de Campos RC, Siciliano S. 2013. Small cetaceans found stranded or accidentally captured in southeastern Brazil: Bioindicators of essential and non-essential trace elements in the environment. Ecotoxicology and Environmental Safety 97:166-175.
  • de Moura JF, Rodrigues ES, Sholl TGC, Siciliano S. 2009. Franciscana dolphin (Pontoporia blainvillei) on the north-east coast of Rio de Janeiro State, Brazil, recorded during a long-term monitoring programme. Marine Biodiversity Records 2:e66.

 

 

Highlights from the 11th Sea Otter Conservation Workshop

By Dominique Kone, Masters Student in Marine Resource Management

I recently attended and presented at the 11th biennial Sea Otter Conservation Workshop (the Workshop), hosted by the Seattle Aquarium. As the largest sea otter-focused meeting in the world, the Workshop brought together dozens of scientists, managers, and conservationists to share important information and research on sea otter conservation issues. Being new to this community, this was my first time attending the Workshop, and I had the privilege of meeting some of the most influential sea otter experts in the world. Here, I recount some of my highlights from the Workshop and discuss the importance of this meeting to the continued conservation and management of global sea otter populations.

Source: The Seattle Aquarium.

Sea otters represent one of the most successful species recovery stories in history. After facing near extinction at the close of the Maritime Fur Trade in 1911 (Kenyon 1969), they have made an impressive comeback due to intense conservation efforts. The species is no longer in such dire conditions, but some distinct populations are still considered at-risk due to their small numbers and persistent threats, such as oil spills or disease. We still have a ways to go until global sea otter populations are recovered, and collaboration across disciplines is needed for continued progress.

The Workshop provided the perfect means for this collaboration and sharing of information. Attendees were a mixture of scientists, managers, advocacy groups, zoos and aquarium staff, and graduate students. Presentations spanned a range of disciplines, including ecology, physiology, genetics, and animal husbandry, to name a few. On the first day of the Workshop, most presentations focused on sea otter ecology and management. The plenary speaker – Dr. Jim Estes (retired ecologist and University of California, Santa Cruz professor) – noted that one of the reasons we’ve had such success in sea otter recovery is due to our vast knowledge of their natural history and behavior. Much of this progress can be attributed to seminal work, such as Keyon’s 1969 report, which provides an extensive synthesis of several sea otter ecological and behavioral studies (Kenyon 1969). Beginning in the 1970’s, several other ecologists – such as David Duggins, Jim Bodkin, Tim Tinker, and Jim himself – expanded this understanding to complex trophic cascades, individual diet specialization, and population demographics.

Jim Estes and Tim Tinker. Source: Jim Estes.

These ecological studies have played an integral role in sea otter conservation, but other disciplines were and continue to be just as important. As the Workshop continued into the second and third days, presentations shifted their focus to physiology, veterinary medicine, and animal husbandry. Two of these speakers – who have played pivotal roles in these areas – are Dr. Melissa Miller (veterinarian specialist and pathologist with the California Department of Fish & Wildlife) and Dr. Mike Murray (director of veterinary services at the Monterey Bay Aquarium). Dr. Miller presented her years of work on understanding causes of mortality in wild southern sea otters in California. Her research showed that shark predation is a large source of mortality in the southern stock, but cardiac arrest, which has gained less attention, is also a large contributing factor.

Dr. Murray discussed his practice of caring for and studying the biology of captive sea otters. He provided an overview of some of the routine procedures (i.e. full body exams, oral surgeries, and radio transmitter implantation) his team conducts to assess and treat stranded wild otters, so they can be returned to the wild. Both presenters demonstrated how advances in veterinary medicine have helped us better understand the multitude of threats to sea otters in the wild, and what interventive measures can be taken to recover sick or injured otters so they can contribute to wild population recovery. By understanding how these threats are impacting sea otter health on an individual level, we can be better equipped to prevent population-wide consequences.

Dr. Melissa Miller conducting a sea otter necropsy. Source: California Department of Fish & Game.

Throughout the entire Workshop, experts with decades of experience presented their work. Yet, one of the most encouraging aspects of this meeting was that several graduate students also presented their research, including myself. In a way, listening to presenters both early and late in their careers gave us a glimpse into the past and future of sea otter conservation. Much of the work currently being conducted by graduate students addresses some of the most pressing and emerging issues (e.g. shark predation, plastic pollution, and diseases) in this field, but also builds off the great knowledge base acquired by many of those at the Workshop.

Perhaps even more encouraging was the level of collaboration and mentorship between graduate students and seasoned experts. Included in almost every graduate student’s acknowledgement section of their presentations, were the names of several Workshop attendees who either advised them or provided guidance on their research. These presentations were often followed up with further meetings between students and their mentors. These types of interactions really demonstrated how invested the sea otter community is in fostering the next generation of leaders in this field. This “passing of the mantel” is imperative to maintain knowledge between generations and to continue to make progress in sea otter conservation. As a graduate student, I greatly appreciated getting the opportunity to interact with and gain advice from many of these researchers, whom I’ve only read about in articles.

Source: Bay Nature.

To summarize my experience, it became clear how important this Workshop was to the broader sea otter conservation community. The Workshop provided the perfect venue for collaboration amongst experts, as well as mentorship of upcoming leaders in the field. It’s important to recognize the great progress and strides the community has made already in understanding the complex lives of sea otters. Sea otters have not recovered everywhere. Therefore, we need to continue to acquire knowledge across all disciplines if we are to make progress in the future, especially as new threats and issues emerge. It will take a village.

Literature Cited:

Kenyon, K. W. 1969. The sea otter in the eastern Pacific Ocean. North American Fauna. 68. 352pp.

Self-improvement as Revenge – a strategy of persistent hope

By Florence Sullivan, MSc (GEMM Lab alumni, 2017)

Frustrating. Exhausting. Time-consuming. Repetitive. Draining. De-Motivating. A sine wave of cautious excitement followed by the crash of disappointment at another rejection.  The longer my job search continues, the more adjectives I have to describe it.

Last spring, I got rejected from a marine mammal and bird survey technician position because I didn’t have enough experience identifying birds. I found this immensely frustrating. So, fueled by the desire to prove “them” wrong, I embarked on my journey of revenge. First, I registered for a free online bird ID course at the Cornell Lab of Ornithology. Then, I got my bird books out, and started paying more attention to the species I encountered in my neighborhood. Next, I attended a training session for the Puget Sound Seabird Survey with the Seattle Audubon Society, and joined a citizen science monitoring team. We are responsible for documenting seabird habitat use at 3 beaches in the South Puget Sound on the first Saturday of each month. Most of my team members have been birding for decades, and they have been helpfully pointing out ID tricks like flight patterns, wing shapes, and color bands to distinguish one species from another. I feel like my marine bird ID is coming along nicely, but there are SO MANY bird species out there…. I know I learn better, and am more focused, when I am working for a team effort, so two weeks ago I attended a training for the Secretive Wetland Bird Monitoring project with the Puget Sound Bird Observatory. We’ll be doing playback surveys for species like American Bittern, Virginia Rail, and Green Herons during three survey windows from April to June. I’m excited for this project because even if I don’t learn to ID the birds by sight (they are secretive after all), it’s a chance to improve my ‘birding by ear’ skills! With all this, I think the next time a job application asks about my experience with birds, I’ll be able to give some more informed answers.

In Summer 2018, I had a rather tumultuous field research experience with a very disorganized project leader.  I ended up leaving the project after a series of poor safety choices by the leadership culminated in the vessel running aground on a well-marked reef.  Several of my colleagues and I were injured in the accident, and it was the first time in my 10 year maritime career that I grabbed my emergency bag and seriously thought I might have to abandon ship.  In this case, we made it to shore, and there was a clinic nearby where we got treated, but what if there hadn’t been?  The more I reflected on what happened, the more I realized how bad the situation could have been.  My revenge on that feeling of helplessness was to sign up for a NOLS Wilderness First Aid Course.  During the course, we practiced patient assessment, discussed the most common injuries when adventuring in the remote areas, and played out scenarios, as both patients and first responders. We discussed proper scene assessment, basic wound care and splints (those were fun to practice), situations like hypo and hyperthermia, and how to make a radio call for help that transmits the most relevant information. After this two day course, I feel much more confident in my ability to manage emergency situations for myself and any team I work with. Handily enough, many field technician jobs list ‘Wilderness First Aid/Wilderness First Responder” in their desired qualifications sections, so I can check that bullet off now too!

One of the best bits of finishing my grad degree has been getting my evenings and weekends back from the depths of homework and research fueled need-to-be-productive-all-the-time depression.  I like making things.  Shortly after turning in my thesis, I traded labor for a sheep fleece & two alpaca fleeces.

This alpaca’s name was ‘Timid’. Here we are leading him to the shearing area.

An acquaintance needed help shearing his small flock, and I saw the opportunity to try a “Sheep to Shawl” project – where you take the raw fiber, clean it, spin it into thread, and weave it into a shawl. I learned how to weave in high school, but I did not know how to spin my own thread.  I borrowed a spinning wheel from my fiber arts mentor, found a spinning group at my local yarn store, and since January have been spinning my own thread!

The bundle of blue/green fiber front and center is the raw wool “roving” that is fed onto the bobbin in the spinning process. The bobbin on the spinning wheel holds a single thread. Thread from two bobbins is then “plyed” together to create yarn – The final yarn is draped over the wheel.

I started with some practice wool to figure the whole thing out, and have just started to spin the fleeces I helped to harvest. It’s going to take me a while, but I’m more interested in the process than any sort of speed. There’s an unfortunate cultural dichotomy between “art” and “science”, but I find that the sort of thinking needed to plan how the threads will intertwine to make a solid and beautiful cloth, is the same sort of thinking needed to understand the myriad processes that inform how an ecosystem functions. If you think about it sideways, knitting & weaving pattern drafts are the first form of binary computer programs – repetitive patterns that when followed result in a product. The creativity needed to make beautiful art is the same creativity that helps problem solve in the field, and long term project planning, forethought and tenacity are all necessary in both research and in fiber arts. While the art itself may not be relevant to the jobs I apply for, the skills are transferable, and the actions recharge my batteries so I can keep solving problems creatively.

I knit my first hand spun yarn into a fun scarf!

It’s an easy trap to fall into – the idea that learning only happens in the classroom, and that once you’ve finally finished school and thrown off the trappings of academia you’re done and never have to learn again.

But never learning anything new would get boring quickly, wouldn’t it?

I may be frustrated by how long it is taking me to find ‘a career’, but I can’t regret the lily pads that I have landed on in the mean-time, or the skills that I have had the opportunity to pick up.

Exciting. Inspiring. Educational. Opportunistic. Expanding my network. Hopeful. A sine wave of disappointment followed by renewed determination to keep trying.  The longer my job search continues, the more adjectives I have to describe it.