Why Feeling Stupid is Great: How stupidity fuels scientific progress and discovery

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

It all started with a paper. On Halloween, I sat at my desk, searching for papers that could answer my questions about bottlenose dolphin metabolism and realized I had forgotten to check my email earlier. In my inbox, there was a new message with an attachment from Dr. Leigh Torres to the GEMM Lab members, saying this was a “must-read” article. The suggested paper was Martin A. Schwartz’s 2008 essay, “The importance of stupidity in scientific research”, published in the Journal of Cell Science, highlighted universal themes across science. In a single, powerful page, Schwartz captured my feelings—and those of many scientists: the feeling of being stupid.

For the next few minutes, I stood at the printer and absorbed the article, while commenting out loud, “YES!”, “So true!”, and “This person can see into my soul”. Meanwhile, colleagues entered my office to see me, dressed in my Halloween costume—as “Amazon’s Alexa”, talking aloud to myself. Coincidently, I was feeling pretty stupid at that moment after just returning from a weekly meeting, where everyone asked me questions that I clearly did not have the answers to (all because of my costume). This paper seemed too relevant; the timing was uncanny. In the past few weeks, I have been writing my PhD research proposal —a requirement for our department— and my goodness, have I felt stupid. The proposal outlines my dissertation objectives, puts my work into context, and provides background research on common bottlenose dolphin health. There is so much to know that I don’t know!

Alexa dressed as “Amazon Alexa” on Halloween at her office in San Diego, CA.

When I read Schwartz’s 2008 paper, there were a few takeaway messages that stood out:

  1. People take different paths. One path is not necessarily right nor wrong. Simply, different. I compared that to how I split my time between OSU and San Diego, CA. Spending half of the year away from my lab and my department is incredibly challenging; I constantly feel behind and I miss the support that physically being with other students provides. However, I recognize the opportunities I have in San Diego where I work directly with collaborators who teach and challenge me in new ways that bring new skills and perspective.

    Image result for different ways
    (Image source: St. Albert’s Place)
  2. Feeling stupid is not bad. It can be a good feeling—or at least we should treat it as being a positive thing. It shows we have more to learn. It means that we have not reached our maximum potential for learning (who ever does?). While writing my proposal I realized just how little I know about ecotoxicology, chemistry, and statistics. I re-read papers that are critical to understanding my own research, like “Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California bight” (2014) by Shaul et al. and “Bottlenose dolphins as indicators of persistent organic pollutants in the western north Atlantic ocean and northern gulf of Mexico” (2011) by Kucklick et al. These articles took me down what I thought were wormholes that ended up being important rivers of information. Because I recognized my knowledge gap, I can now articulate the purpose and methods of analysis for specific compounds that I will conduct using blubber samples of common bottlenose dolphins

    Image result
    Image source: memegenerator.net
  3. Drawing upon experts—albeit intimidating—is beneficial for scientific consulting as well as for our mental health; no one person knows everything. That statement can bring us together because when people work together, everyone benefits. I am also reminded that we are our own harshest critics; sometimes our colleagues are the best champions of our own successes. It is also why historical articles are foundational. In the hunt for the newest technology and the latest and greatest in research, it is important to acknowledge the basis for discoveries. My data begins in 1981, when the first of many researchers began surveying the California coastline for common bottlenose dolphins. Geographic information systems (GIS) were different back then. The data requires conversions and investigative work. I had to learn how the data were collected and how to interpret that information. Therefore, it should be no surprise that I cite literature from the 1970s, such as “Results of attempts to tag Atlantic Bottlenose dolphins, (Tursiops truncatus)” by Irvine and Wells. Although published in 1972, the questions the authors tried to answer are very similar to what I am looking at now: how are site fidelity and home ranges impacted by natural and anthropogenic processes. While Irvine and Wells used large bolt tags to identify individuals, my project utilizes much less invasive techniques (photo-identification and blubber biopsies) to track animals, their health, and their exposures to contaminants.

    Image result for that is why you fail yoda
    (Image source: imgflip.com)
  4. Struggling is part of the solution. Science is about discovery and without the feeling of stupidity, discovery would not be possible. Feeling stupid is the first step in the discovery process: the spark that fuels wanting to explore the unknown. Feeling stupid can lead to the feeling of accomplishment when we find answers to those very questions that made us feel stupid. Part of being a student and a scientist is identifying those weaknesses and not letting them stop me. Pausing, reflecting, course correcting, and researching are all productive in the end, but stopping is not. Coursework is the easy part of a PhD. The hard part is constantly diving deeper into the great unknown that is research. The great unknown is simultaneously alluring and frightening. Still, it must be faced head on. Schwartz describes “productive stupidity [as] being ignorant by choice.” I picture this as essentially blindly walking into the future with confidence. Although a bit of an oxymoron, it resonates the importance of perseverance and conviction in the midst of uncertainty.

    Image result for funny t rex
    (Image source: Redbubble)

Now I think back to my childhood when stupid was one of the forbidden “s-words” and I question whether society had it all wrong. Maybe we should teach children to acknowledge ignorance and pursue the unknown. Stupid is a feeling, not a character flaw. Stupidity is important in science and in life. Fascination and emotional desires to discover new things are healthy. Next time you feel stupid, try running with it, because more often than not, you will learn something.

Image may contain: 1 person, sitting, table, child and outdoor
Alexa teaching about marine mammals to students ages 2-6 and learning from educators about new ways to engage young students. San Diego, CA in 2016. (Photo source: Lori Lowder)

Oregon Sea Otter Status of Knowledge Symposium

By Dominique Kone, Masters Student in Marine Resource Management

Over the past year, the GEMM Lab has been investigating the ecological factors associated with a potential sea otter reintroduction to Oregon. A potential reintroduction is not only of great interest to our lab, but also to several other researchers, managers, tribes, and organizations in the state. With growing interest, this idea is really starting to gain momentum. However, the best path forward to making this idea a reality is somewhat unknown, and will no doubt take a lot of time and effort from multiple groups.

In an effort to catalyze this process, the Elakha Alliance – led by Bob Bailey – organized the Oregon Sea Otter Status of Knowledge Symposium earlier this month in Newport, OR. The purpose of this symposium was to share information, research, and lessons learned about sea otters in other regions. Speakers – primarily scientists, managers, and graduate students – flew in from all over the U.S. and the Canadian west coast to share their expertise and discuss various factors that must be considered before any reintroduction efforts begin. Here, I review some of the key takeaways from those discussions.

Source: The Elakha Alliance

To start the meeting, Dr. Anne Salomon – an associate professor from Simon Fraser University – and Kii’iljuus Barbara Wilson – a Haida Elder – gave an overview of the role of sea otters in nearshore ecosystems and their significance to First Nations in British Columbia. Hearing these perspectives not only demonstrated the various ecological effects – both direct and indirect – of sea otters, but it also illustrated their cultural connection to indigenous people and the role tribes can play (and currently do play in British Columbia) in co-managing sea otters. In Oregon, we need to be aware of all the possible effects sea otters may have on our ecosystems and acknowledge the opportunity we have to restore these cultural connections to Oregon’s indigenous people, such as the Confederated Tribes of Siletz Indians.

Source: The Elakha Alliance and the Confederated Tribes of Siletz Indians.

The symposium also involved several talks on the recovery of sea otter populations in other regions, as well as current limitations to their population growth. Dr. Lilian Carswell and Dr. Deanna Lynch – sea otter and marine conservation coordinators with the U.S. Fish & Wildlife Service – and Dr. Jim Bodkin – a sea otter ecologist – provided these perspectives. Interestingly, not all stocks are recovering at the same rate and each population faces slightly different threats. In California, otter recovery is slowed by lack of available food and mortality due to investigative shark bites, which prevents range expansion. In other regions, such as Washington, the population appears to be growing rapidly and lack of prey and shark bite-related mortality appear to be less important. However, this population does suffer from parasitic-related mortality. The major takeaway from these recovery talks is that threats can be localized and site-specific. In considering a reintroduction to Oregon, it may be prudent to investigate if any of these threats and population growth limitations exist along our coastline as they could decrease the potential for sea otters to reestablish.

Source: The Seattle Aquarium and U.S. Fish & Wildlife Service.

Dr. Shawn Larson – a geneticist and ecologist from the Seattle Aquarium – gave a great overview of the genetic research that has been conducted for historical (pre-fur trade) Oregon sea otter populations. She explained that historical Oregon populations were genetically-similar to both southern and northern populations, but there appeared to be a “genetic gradient” where sea otters near the northern Oregon coast were more similar to northern populations – ranging to Alaska – and otters from the southern Oregon coast were more similar to southern populations – ranging to California. Given this historic genetic gradient, reintroducing a mixture of sea otters – subsets from contemporary northern and southern stocks – should be considered in a future Oregon reintroduction effort. Source-mixing could increase genetic diversity and may more-closely resemble genetic diversity levels found in the original Oregon population.

At the end of the meeting, an expert panel – including Dr. Larson, Dr. Bodkins, Dr. Lynch, and Dr. Carswell – provided their recommendations on ways to better inform this process. To keep this brief, I’ll discuss the top three recommendations I found most intriguing and important.

  1. Gain a better understanding of sea otter social behavior. Sea otters have strong social bonds, and previous reintroductions have failed because relocated individuals returned to their capture sites to rejoin their source populations. While this site fidelity behavior is relatively understood, we know less about the driving mechanisms – such as age or sex – of those behaviors. Having a sound understanding of these behaviors and their mechanisms could help to identify those which may hinder reestablishment following a reintroduction.
  2. When anticipating the impacts of sea otters on ecosystems, investigate the benefits too. When we think of impacts, we typically think of costs. However, there are documented benefits of sea otters, such as increasing species diversity (Estes & Duggins 1995, Lee et al. 2016). Identifying these benefits – as well as to people – would more completely demonstrate their importance.
  3. Investigate the human social factors and culture in Oregon relative to sea otters, such as perceptions of marine predators. Having a clear understanding of people’s attitudes toward marine predators – particularly marine mammals – could help managers better anticipate and mitigate potential conflicts and foster co-existence between otters and people.
Source: Paul Malcolm

While much of the symposium was focused on learning from experts in other regions, I would be remiss if I didn’t recognize the great talks given by a few researchers in Oregon – including Sara Hamilton (OSU doctoral student), Dr. Roberta Hall (OSU emeritus professor), Hannah Wellman (University of Oregon doctoral student), and myself. Individually, we spoke about the work that has already been done and is currently being done on this issue – including understanding bull kelp ecology, studying sea otter archaeological artifacts, and a synthesis of the first Oregon translocation attempt. Collectively, our talks provided some important context for everyone else in the room and demonstrated that we are working to make this process as informed as possible for managers. Oregon has yet to determine if they will move forward with a sea otter reintroduction and what that path forward will look like. However, given this early interest – as demonstrated by the symposium – we, as researchers, have a great opportunity to help guide this process and provide informative science.

References:

Estes, J. A. and D. O. Duggins. 1995. Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecological Monographs. 65: 75-100.

Lee, L. C., Watson, J. C., Trebilco, R., and A. K. Salomon. 2016. Indirect effects and prey behavior mediate interactions between an endangered prey and recovering predator. Ecosphere. 7(12).

Collaboration – it’s where it’s at.

By Dominique Kone, Masters Student in Marine Resource Management

As I finish my first year of graduate school, I’ve been reflecting on what has helped me develop as a young scientist over the past year. Some of these lessons are somewhat expected: making time for myself outside of academia, reading the literature, and effectively managing my time. Yet, I’ve also learned that working with my peers, other scientists, and experts outside my scientific field can be extremely rewarding.

For my thesis, I will be looking at the potential to reintroduce sea otters to the Oregon coast by identifying suitable habitat and investigating their potential ecological impacts. During this first year, I’ve spent much time getting to know various stakeholder groups, their experiences with this issue, and any advice they may have to inform my work. Through these interactions, I’ve benefitted in ways that would not have been possible if I tried tackling this project on my own.

Source: Seapoint Center for Collaborative Leadership.

When I first started my graduate studies, I was eager to jump head first into my research. However, as someone who had never lived in Oregon before, I didn’t yet have a full grasp of the complexities and context behind my project and was completely unfamiliar with the history of sea otters in Oregon. By engaging with managers, scientists, and advocates, I quickly realized that there was a wealth of knowledge that wasn’t covered in the literature. Information from people who were involved in the initial reintroduction; theories behind the cause of the first failed reintroduction; and most importantly, the various political, social, and culture implications of a potential reintroduction. This information was crucial in developing and honing my research questions, which I would have missed if I had solely relied on the literature.

As my first year in graduate school progressed, I also quickly realized that most people familiar with this issue also had strong opinions and views about how I should conduct my study, whether and how managers should bring sea otters back, and if such an effort will succeed. This input was incredibly helpful in getting to know the issue, and also fostered my development as a scientist as I had to quickly improve my listening and critically-thinking skills to consider my research from different perspectives. One of the benefits of collaboration – particularly with experts outside the marine ecology or sea otter community – is that everyone looks at an issue in a different way. Through my graduate program, I’ve worked with students and faculty in the earth, oceanic, and atmospheric sciences, whom have challenged me to consider other sources of data, other analyses, or different ways of placing my research within various contexts.

Most graduate students when they first start graduate school. Source: Know Your Meme.

One of the major advantages of being a graduate student is that most researchers – including professors, faculty, managers, and fellow graduate students – are more than happy to analyze and discuss my research approach. I’ve obtained advice on statistical analyses, availability and access to data, as well as contacts to other experts. As a graduate student, it’s important for me to consult with more-experienced researchers who can not only explain complex theories or concepts, but who can also validate the appropriateness of my research design and methods. Collaborating with senior researchers is a great way to become established and recognized within the scientific community. Because of this project, I’ve started to become adopted into the marine mammal and sea otter research communities, which is obviously beneficial for my thesis work, but also allows me to start building strong relationships for a career in marine conservation.

Source: Oregon State University.

Looking ahead to my second year of graduate school, I’m eager to make a big push toward completing my thesis, writing manuscripts for journal submission, and communicating my research to various audiences. Throughout this process, it’s still important for me to continue to reach out and collaborate with others within and outside my field as they may help me reach my personal goals. In my opinion, this is exactly what graduate students should be doing. While graduate students may have the ability and some experience to work independently, we are still students, and we are here to learn from and make lasting connections with other researchers and fellow graduate students through these collaborations.

If there’s any advice I would give to an incoming graduate student, it’s this: Collaborate, and collaborate often. Don’t be afraid to work with others because you never know whether you’ll come away with a new perspective, learn something new, come across new research or professional opportunities, or even help others with their research.

The Land of Maps and Charts: Geospatial Ecology

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I love maps. I love charts. As a random bit of trivia, there is a difference between a map and a chart. A map is a visual representation of land that may include details like topology, whereas a chart refers to nautical information such as water depth, shoreline, tides, and obstructions.

Map of San Diego, CA, USA. (Source: San Diego Metropolitan Transit System)
Chart of San Diego, CA, USA. (Source: NOAA)

I have an intense affinity for visually displaying information. As a child, my dad traveled constantly, from Barrow, Alaska to Istanbul, Turkey. Immediately upon his return, I would grab our standing globe from the dining room and our stack of atlases from the coffee table. I would sit at the kitchen table, enthralled at the stories of his travels. Yet, a story was only great when I could picture it for myself. (I should remind you, this was the early 1990s, GoogleMaps wasn’t a thing.) Our kitchen table transformed into a scene from Master and Commander—except, instead of nautical charts and compasses, we had an atlas the size of an overgrown toddler and salt and pepper shakers to pinpoint locations. I now had the world at my fingertips. My dad would show me the paths he took from our home to his various destinations and tell me about the topography, the demographics, the population, the terrain type—all attribute features that could be included in common-day geographic information systems (GIS).

Uncle Brian showing Alexa where they were on a map of Maui, Hawaii, USA. (Photo: Susan K. circa 1995)

As I got older, the kitchen table slowly began to resemble what I imagine the set from Master and Commander actually looked like; nautical charts, tide tables, and wind predictions were piled high and the salt and pepper shakers were replaced with pencil marks indicating potential routes for us to travel via sailboat. The two of us were in our element. Surrounded by visual and graphical representations of geographic and spatial information: maps. To put my map-attraction this in even more context, this is a scientist who grew up playing “Take-Off”, a board game that was “designed to teach geography” and involved flying your fleet of planes across a Mercator projection-style mapboard. Now, it’s no wonder that I’m a graduate student in a lab that focuses on the geospatial aspects of ecology.

A precocious 3-year-old Alexa, sitting with the airplane pilot asking him a long list of travel-related questions (and taking his captain’s hat). Photo: Susan K.

So why and how did geospatial ecology became a field—and a predominant one at that? It wasn’t that one day a lightbulb went off and a statistician decided to draw out the results. It was a progression, built upon for thousands of years. There are maps dating back to 2300 B.C. on Babylonian clay tablets (The British Museum), and yet, some of the maps we make today require highly sophisticated technology. Geospatial analysis is dynamic. It’s evolving. Today I’m using ArcGIS software to interpolate mass amounts of publicly-available sea surface temperature satellite data from 1981-2015, which I will overlay with a layer of bottlenose dolphin sightings during the same time period for comparison. Tomorrow, there might be a new version of software that allows me to animate these data. Heck, it might already exist and I’m not aware of it. This growth is the beauty of this field. Geospatial ecology is made for us cartophiles (map-lovers) who study the interdependency of biological systems where location and distance between things matters.

Alexa’s grandmother showing Alexa (a very young cartographer) how to color in the lines. Source: Susan K. circa 1994

In a broader context, geospatial ecology communicates our science to all of you. If I posted a bunch of statistical outputs in text or even table form, your eyes might glaze over…and so might mine. But, if I displayed that same underlying data and results on a beautiful map with color-coded symbology, a legend, a compass rose, and a scale bar, you might have this great “ah-ha!” moment. That is my goal. That is what geospatial ecology is to me. It’s a way to SHOW my science, rather than TELL it.

Would you like to see this over and over again…?

A VERY small glimpse into the enormous amount of data that went into this map. This screenshot gave me one point of temperature data for a single location for a single day…Source: Alexa K.

Or see this once…?

Map made in ArcGIS of Coastal common bottlenose dolphin sightings between 1981-1989 with a layer of average sea surface temperatures interpolated across those same years. A picture really is worth a thousand words…or at least a thousand data points…Source: Alexa K.

For many, maps are visually easy to interpret, allowing quick message communication. Yet, there are many different learning styles. From my personal story, I think it’s relatively obvious that I’m, at least partially, a visual learner. When I was in primary school, I would read the directions thoroughly, but only truly absorb the material once the teacher showed me an example. Set up an experiment? Sure, I’ll read the lab report, but I’m going to refer to the diagrams of the set-up constantly. To this day, I always ask for an example. Teach me a new game? Let’s play the first round and then I’ll pick it up. It’s how I learned to sail. My dad described every part of the sailboat in detail and all I heard was words. Then, my dad showed me how to sail, and it came naturally. It’s only as an adult that I know what “that blue line thingy” is called. Geospatial ecology is how I SEE my research. It makes sense to me. And, hopefully, it makes sense to some of you!

Alexa’s dad teaching her how to sail. (Source: Susan K. circa 2000)
Alexa’s first solo sailboat race in Coronado, San Diego, CA. Notice: Alexa’s dad pushing the bow off the dock and the look on Alexa’s face. (Source: Susan K. circa 2000)
Alexa mapping data using ArcGIS in the Oregon State University Library. (Source: Alexa K circa a few minutes prior to posting).

I strongly believe a meaningful career allows you to highlight your passions and personal strengths. For me, that means photography, all things nautical, the great outdoors, wildlife conservation, and maps/charts.  If I converted that into an equation, I think this is a likely result:

Photography + Nautical + Outdoors + Wildlife Conservation + Maps/Charts = Geospatial Ecology of Marine Megafauna

Or, better yet:

? + ⚓ + ? + ? + ? =  GEMM Lab

This lab was my solution all along. As part of my research on common bottlenose dolphins, I work on a small inflatable boat off the coast of California (nautical ✅, outdoors ✅), photograph their dorsal fin (photography ✅), and communicate my data using informative maps that will hopefully bring positive change to the marine environment (maps/charts ✅, wildlife conservation✅). Geospatial ecology allows me to participate in research that I deeply enjoy and hopefully, will make the world a little bit of a better place. Oh, and make maps.

Alexa in the field, putting all those years of sailing and chart-reading to use! (Source: Leila L.)

 

Living the Dream – life as a marine mammal observer

By Florence Sullivan, MSc.

Living the dream as a marine mammal observer onboard the R/V Bell Shimada Photo credit: Dave Jacobsen

I first learned that “Marine Mammal Observer” was a legitimate career field during the summer after my junior year at the University of Washington.  I had the good fortune to volunteer for the BASIS fisheries-oceanography survey onboard the R/V Oscar Dyson where I met two wonderful bird observers who taught me how to identify various pelagic bird species and clued me in to just how diverse the marine science job market can be. After the cruise, younger Florence went off with an expanded world view and a small dream that maybe someday she could go out to sea and survey for marine mammals on a regular basis (and get paid for it?!).  Eight years later, I am happy to report that I have just spent the last week as the marine mammal observer on the North California Current Survey on the Dyson’s sister ship, the R/V Bell M. Shimada.  While we may not have seen as many marine mammals as I would have liked, the experience has still been everything younger Florence hoped it would be.

Finally leaving port a few days behind schedule due to stormy weather! photo credit: Florence Sullivan

If you’ve ever wondered why the scientists in your life may refer to summer as “field work season”, it’s because attempting to do research outside in the winter is an exercise in frustration, troubleshooting, and flexibility. Case in point; this cruise was supposed to sail away from port on the 24th of February, but did not end up leaving until the 27th due to bad weather.  This weather delay meant that we had to cut some oceanographic stations we would like to have sampled, and even when we made it out of the harbor, the rough weather made it impossible to sample some of the stations we still had left on our map.  That being said, we still got a lot of good work done!

The original station map. The warm colors are the west coast of the US, the cold colors are the ocean, and the black dots are planned survey stations

The oceanographers were able to conduct CTD casts at most planned stations, as well as sample the water column with a vertical zooplankton net, a HAB net (for looking for the organisms that cause Harmful Algal Blooms),  and a Bongo Net (a net that specializes in getting horizontal samples of the water column).  When it wasn’t too windy, they were also able to sample with the Manta net (a net specialized for surface sampling – it looks like a manta ray’s mouth) and at certain near-shore stations they did manage to get some bottom beam trawls in to look at the benthic community of fishes and invertebrates.  All this was done while dodging multitudes of crab pots and storm fronts.  The NOAA corps officers who drive the boat, and the deck crew who handle all the equipment deployments and retrievals really did their utmost to make sure we were able to work.

Stormy seas make for difficult sampling conditions! photo credit: Florence Sullivan

For my part, I spent the hours between stations searching the wind-tossed waves for any sign of marine mammals. Over the course of the week, I saw a few Northern fur seals, half a dozen gray whales, and a couple of unidentified large cetaceans.  When you think about the productivity of the North Pacific Ecosystem this may not seem like very much.  But remember, it is late winter, and I do not have x-ray vision to see through the waves.  It is likely that I missed a number of animals simply because the swell was too large, and when we calculate our “detection probability” these weather factors will be taken into account. In addition, many of our local marine mammals are migrators who might be in warmer climates, or are off chasing different food sources at the moment.  In ecology, when you want to know how a population of animals is distributed across a land- or sea-scape, it is just as important to understand where the animals are NOT as where they ARE. So all of this “empty” water was very important to survey simply because it helps us refine our understanding of where animals don’t want to be.  When we know where animals AREN’T we can ask better questions about why they occur where they ARE.

Black Footed Albatross soars near the boat. Photo credit: Florence Sullivan

Notable species of the week aside from the marine mammals include Laysan and Black Footed Albatrosses, a host of Vellella vellella (sailor by the wind hydroid colonies) and the perennial favorite of oceanographers; the shrinking Styrofoam cup.  (See pictures)

We sent these styrofoam cups down to 1800 meters depth. The pressure at those depths causes all the air to escape from the styrofoam, and it shrinks! This is a favorite activity of oceanographers to demonstrate the effects on increased pressure!

These sorts of interdisciplinary cruises are quite fun and informative to participate in because we can build a better picture of the ecosystem as a whole when we use a multitude of methods to explore it.  This strength of cooperation makes me proud to add my little piece to the puzzle. As I move forward in life, whether I get to be the marine mammal observer, the oceanographer, or perhaps an educator, I will always be glad to contribute to collaborative research.

 

GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.

 

The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.

 

Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

A Marine Mammal Odyssey, Eh!

By Leila Lemos, PhD student

Dawn Barlow, MS student

Florence Sullivan, MS

The Society for Marine Mammalogy’s Biennial Conference on the Biology of Marine Mammals happens every two years and this year the conference took place in Halifax, Nova Scotia, Canada.

Logo of the Society for Marine Mammalogy’s 22nd Biennial Conference on the Biology of Marine Mammals, 2017: A Marine Mammal Odyssey, eh!

The conference started with a welcome reception on Sunday, October 22nd, followed by a week of plenaries, oral presentations, speed talks and posters, and two more days with different workshops to attend.

This conference is an important event for us, as marine mammalogists. This is the moment where we get to share our projects (how exciting!), get important feedback, and hear about different studies that are being conducted around the world. It is also an opportunity to network and find opportunities for collaboration with other researchers, and of course to learn from our colleagues who are presenting their work.

The GEMM Lab attending the opening plenaries of the conference!

The first day of conference started with an excellent talk from Asha de Vos, from Sri Lanka, where she discussed the need for increased diversity (in all aspects including race, gender, nationality, etc.) in our field, and advocated for the end of “parachute scientists” who come into a foreign (to them) location, complete their research, and then leave without communicating results, or empowering the local community to care or act in response to local conservation issues.  She also talked about the difficulty that researchers in developing countries face accessing research that is hidden behind journal pay walls, and encouraged everyone to get creative with communication! This means using blogs and social media, talking to science communicators and others in order to get our stories out, and no longer hiding our results behind the ivory tower of academia.  Overall, it was an inspirational way to begin the week.

On Thursday morning we heard Julie van der Hoop, who was this year’s recipient of the F.G. Wood Memorial Scholarship Award, present her work on “Drag from fishing gear entangling right whales: a major extinction risk factor”. Julie observed a decrease in lipid reserves in entangled whales and questioned if entanglements are as costly as events such as migration, pregnancy or lactation. Tags were also deployed on whales that had been disentangled from fishing gear, and researchers were able to see an increase in whale speed and dive depth.

Julie van der Hoop talks about different drag forces of fishing gears
on North Atlantic Right Whales.

There were many other interesting talks over the course of the week. Some of the talks that inspired us were:

— Stephen Trumble’s talk “Earplugs reveal a century of stress in baleen whales and the impact of industrial whaling” presented a time-series of cortisol profiles of different species of baleen whales using earplugs. The temporal data was compared to whaling data information and they were able to see a high correlation between datasets. However, during a low whaling season concurrent to the World War II in the 40’s, high cortisol levels were potentially associated to an increase in noise from ship traffic.

— Jane Khudyakov (“Elephant seal blubber transcriptome and proteome responses to single and repeated stress”) and Cory Champagne (“Metabolomic response to acute and repeated stress in the northern elephant seal”) presented different aspects of the same project. Jane looked at down/upregulation of genes (downregulation is when a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus; upregulation is the opposite: when the cell increases the quantity of cellular components) to check for stress. She was able to confirm an upregulation of genes after repeated stressor exposure. Cory checked for influences on the metabolism after administering ACTH (adrenocorticotropic hormone: a stimulating hormone that causes the release of glucocorticoid hormones by the adrenal cortex. i.e., cortisol, a stress related hormone) to elephant seals. By looking only at the stress-related hormone, he was not able to differentiate acute from chronic stress responses. However, he showed that many other metabolic processes varied according to the stress-exposure time. This included a decrease in amino acids, mobilization of lipids and upregulation of carbohydrates.

— Jouni Koskela (“Fishing restrictions is an essential protection method of the Saimaa ringed seal”) talked about the various conservation efforts being undertaken for the endangered Lake Saimaa ringed seal. Gill nets account for 90% of seal pup mortality, but if new pups can reach 20kg, only 14% of them will drown in these fishing net entanglements. Working with local industry and recreational interests, increased fishing restrictions have been enacted during the weaning season. In addition to other year-round restrictions, this has led to a small, but noticeable upward trend in pup production and population growth! A conservation success story is always gratifying to hear, and we wish these collaborative efforts continued future success.

— Charmain Hamilton (“Impacts of sea-ice declines on a pinnacle Arctic predator-prey relationship: Habitat, behaviour, and spatial overlap between coastal polar bears and ringed seals”) gave a fascinating presentation looking at how changing ice regimes in the arctic are affecting spatial habitat use patterns of polar bears. As ice decreases in the summer months, the polar bears move more, resulting in less spatial overlap with ringed seal habitat, and so the bears have turned to targeting ground nesting seabirds.  This spatio-temporal mismatch of traditional predator/prey has drastic implications for arctic food web dynamics.

— Nicholas Farmer’s presentation on a Population Consequences of Disturbance (PCoD) model for assessing theoretical impacts of seismic survey on sperm whale population health had some interesting parallels with new questions in our New Zealand blue whale project. By simulating whale movement through modeled three-dimensional sound fields, he found that the frequency of the disturbance (i.e., how many days in a row the seismic survey activity persisted) was very important in determining effects on the whales. If the seismic noise persists for many days in a row, the sperm whales may not be able to replenish their caloric reserves because of ongoing disturbance. As you can imagine, this pattern gets worse with more sequential days of disturbance.

— Jeremy Goldbogen used suction cup tags equipped with video cameras to peer into an unusual ecological niche: the boundary layer of large whales, where drag is minimized and remoras and small invertebrates compete and thrive. Who would have thought that at a marine mammal conference, a room full of people would be smiling and laughing at remoras sliding around the back of a blue whale, or barnacles filter feeding as they go for a ride with a humpback whale? Insights from animals that occupy this rare niche can inform improvements to current tag technologies.

The GEMM Lab was well represented this year with six different talks: four oral presentations and two speed talks! It is evident that all of our hard work and preparation, such as practicing our talks in front of our lab mates two weeks in advance, paid off.  All of the talks were extremely well received by the audience, and a few generated intelligent questions and discussion afterwards – exactly as we hoped.  It was certainly gratifying to see how packed the room was for Sharon’s announcement of our new method of standardizing photogrammetry from drones, and how long the people stayed to talk to Dawn after her presentation about an unique population of New Zealand blue whales – it took us over an hour to be able to take her away for food and the celebratory drinks she deserved!

GEMM Lab members on their talks. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

 

GEMM Lab members at the closing celebration. From left to right: Florence Sullivan, Leila Lemos, Amanda Holdman, Solène Derville, and Dawn Barlow.
We are not always serious, we can get silly sometimes!

The weekend after the conference many courageous researchers who wanted to stuff their brains with even more specialized knowledge participated in different targeted workshops. From 32 different workshops that were offered, Leila chose to participate in “Measuring hormones in marine mammals: Current methods, alternative sample matrices, and future directions” in order to learn more about the new methods, hormones and matrices that are being used by different research groups and also to make connections with other endocrinologist researchers. Solène participated in the workshop “Reproducible Research with R, Git, and GitHub” led by Robert Shick.  She learned how to better organize her research workflow and looks forward to teaching us all how to be better collaborative coders, and ensure our analysis is reproducible by others and by our future selves!

On Sunday none of us from the GEMM Lab participated in workshops and we were able to explore a little bit of the Bay of Fundy, an important area for many marine mammal species. Even though we didn’t spot any marine mammals, we enjoyed witnessing the enormous tidal exchange of the bay (the largest tides in the world), and the fall colors of the Annaoplis valley were stunning as well. Our little trip was fun and relaxing after a whole week of learning.

The beauty of the Bay of Fundy.
GEMM Lab at the Bay of Fundy; from left to right: Kelly Sullivan (Florence’s husband and a GEMM Lab fan), Florence Sullivan, Dawn Barlow, Solène Derville, and Leila Lemos.
We do love being part of the GEMM Lab!

It is amazing how refreshing it is to participate in a conference. So many ideas popping up in our heads and an increasing desire to continue doing research and work for conservation of marine mammals. Now it’s time to put all of our ideas and energy into practice back home! See you all in two years at the next conference in Barcelona!

Flying out of Halifax!

We Are Family

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The GEMM Lab celebrating Leigh’s birthday with homemade baked goods and discussions about science.

A lab is a family. I know there is the common saying about how you cannot choose your family and you can only choose your friends. But, I’d beg to differ. In the case of graduate school, especially in departments similar to OSU’s Fisheries and Wildlife, your lab is your chosen family. These are the people who encourage you when you’ve hit a roadblock, who push you when you need extra motivation, who will laugh with you when you’ve reached the point of hysteria after hours of data analysis, who will feed you when you’re too busy to buy groceries, and who will always be there for you. That sure sounds a lot like a family to me.

GEMM Lab members at the Society for Marine Mammalogy 2017 Conference in Halifax, Nova Scotia at the masquerade ball. Photo source: Florence Sullivan

Many of us spend weeks—if not months—conducting field research for our various projects. None of us do this work from the main campus…seeing as the main campus for Oregon State University is located Corvallis, Oregon which is approximately 50 miles inland from the Pacific Ocean. The GEMM Lab isn’t actually based on the main campus; instead, you’ll find the lab at the Hatfield Marine Science Center in Newport, Oregon, within a two-minute stroll of the picturesque Yaquina Bay. However, many of the core classes we need are only offered on main campus. This results in the GEMM Lab members being spread across Corvallis, Newport, and the dominant fieldwork site for their project (which could be locally in Oregon, or in the waters off of New Zealand). So rather than your typical, weekly, hour-long lab meetings, the GEMM Lab meetings are monthly and last on the order of 3-5 hours. Others hear this and think that must be overwhelming to have such a long lab meeting. On the contrary, these are scheduled to fit into all of our chaotic schedules. One day a month, all of us gather together as a family unit, share what’s new about our lives, be sounding boards for each other, solve problems, and do so in a supportive environment. Hopefully you’re getting the picture that just because we’re all part of the same lab, it doesn’t mean we’re geographically close. This is exactly why we cultivate meaningful relationships while we are together. The Harvard Business Review published an article 2015 based on multiple peer-reviewed journals, summarizing the six dominant characteristics necessary to foster a positive workplace:

  1. Caring for colleagues as friends
  2. Supporting each other
  3. Avoiding blame and forgiving mistakes
  4. Inspiring each other at work
  5. Emphasizing the meaningfulness of the work
  6. Treating each other with respect

And I can attest that every member within the GEMM Lab embraces all of these characteristics and I have a feeling that none of them have read that article prior to today. Family naturally follows those basic guidelines. And, our lab, is a family.

My very first GEMM Family Dinner.

Case and Point: when I was applying for graduate programs, I made a point of traveling to meet the GEMM Lab members at the monthly lab meeting. Sure, I also wanted to make sure that both Newport and Corvallis would be good fits in terms of locations. But, mostly, I needed to see if this Lab would be a strong family unit for my graduate school career and beyond. The moment I arrived at Hatfield Marine Science Center in Newport, it was clear, this was a family that I could see myself being a part of. Not only had all the members brought some kind of food item to share at the lab meeting (this was important to me), but Florence had baked homemade bread, Dawn had offered to show me around Hatfield, and Leila had set up a time to take me around main campus with other grad students. During the lab meeting discussions, I was welcomed to contribute and I felt comfortable doing so. That was another big moment where something “clicked” and I knew I had found a great group of amazing scientists who were also amazing human beings.

GEMM Lab members at the Port Orford Field Station in August 2017.

Flash forward a few months, and now I am one of those lab members who is bringing food to lab meetings. More than that, we have GEMM Lab dinners and game nights. I may be based in Corvallis, but I commute out to Newport just for these fun activities because this is my family. I want to be with them—not only when we’re talking about our research—but when we’re laughing about the silly things that happen in our daily lives, comically screaming at each other in an effort to win whatever game is on the table, and enjoying home-cooked meals. This is my family.

GEMM Lab members helping some friends at South Coast Tours build a dirt-bag house in August 2017.

I guess I’d like to plug this message to any potential graduate student regardless of discipline(s): find a lab with people that you truly want to surround yourselves with—day and night—in good times and in bad times—because undoubtedly, you’ll need those kinds of people. And, to current lab constituents in any lab: it’s up to us to create a supportive family which will make everyone successful.

Sister Sledge knew just this when the group sang this verse of their hit, “We Are Family”:

Living life is fun and we’ve just begun
To get our share of this world’s delights
High, high hopes we have for the future
And our goal’s in sight
We, no we don’t get depressed
Here’s what we call our golden rule
Have faith in you and the things you do
You won’t go wrong, oh-no
This is our family Jewel

I’m grateful to have found a lab that embodies the lyrics of one of my favorite childhood karaoke songs. The GEMM Lab is not only a lab that produces cutting-edge science; it is a family that encourages one another in all facets of life—creating an environment where people can have high-quality lives and generate high-quality science.

GEMM Lab Family Dinner complete with the board game, Evolution, and homemade pizza. October 2017.

The GEMM Lab is Conference-Bound!

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Every two years, an international community of scientists gather for one week to discuss the most current and pressing science and conservation issues surrounding marine mammals. The thousands of attendees range from longtime researchers who have truly shaped the field throughout the course of their careers to students who are just beginning to carve out a niche of their own. I was able to attend the last conference, which took place in San Francisco in 2015, as an undergraduate. The experience cemented my desire to pursue marine mammal research in graduate school and beyond, and also solidified my connection with Leigh Torres and the Geospatial Ecology of Marine Megafauna Laboratory, leading to my current enrollment at Oregon State University. This year, the 22nd Biennial Conference on the Biology of Marine Mammals takes place in Halifax, Nova Scotia, Canada. At the end of this week, Florence, Leila, Amanda, Solene, Sharon and I will head northeast to represent the GEMM Lab at the meeting!

As those of you reading this may not be able to attend, I’d like to share an overview of what we will be presenting next week. If you will be in Halifax, we warmly invite you to the following presentations. In order of appearance:

Amanda will present the final results from part of her MSc thesis on Monday in a presentation titled Comparative fine-scale harbor porpoise habitat models developed using remotely sensed and in situ data. It will be great for current GEMM Lab members to catch up with this recent GEMM Lab graduate on the other side of the continent! (Session: Conservation; Time: 4:00 pm)

On Tuesday morning, Leila will share the latest and greatest updates on her research about Oregon gray whales, including photogrammetry from drone images and stress hormones extracted from fecal samples! Her presentation is titled Combining traditional and novel techniques to link body condition and hormone variability in gray whales. This is innovative and cutting-edge work, and it is exciting to think it will be shared with the international research community. (Session: Health; Time: 10:45 am)

Did you think humpback whales have been so well studied that we must know just about everything about them? Think again! Solene will be sharing new and exciting insights from humpback whales tagged in New Caledonia, who appear to spend an intriguing amount of time around seamounts. Her talk Why do humpback whales aggregate around seamounts in South Pacific tropical waters? New insights from diving behaviour and ocean circulation analyses, will take place on Tuesday afternoon. (Session: Habitat and Distribution Speed Talks; Time: 1:30 pm)

I will be presenting the latest findings from our New Zealand blue whale research. Based on multiple data streams, we now have evidence for a unique blue whale population which is present year-round in New Zealand waters! This presentation, titled From migrant to resident: Multiple data streams point toward a resident New Zealand population of blue whales, will round out the oral presentations on Tuesday afternoon. (Session: Population Biology and Abundance; Time: 4:45 pm)

The GEMM Lab is using new technologies and innovative quantitative approaches to measure gray whale body condition and behaviors from an aerial perspective. On Wednesday afternoon, Sharon will present Drone up! Quantifying whale behavior and body condition from a new perspective on behalf of Leigh. With the emerging prevalence of drones, we are excited to introduce these quantitative applications. (Session: New Technology; Time: 11:45 am)

GoPros, kayaks, and gray whales, oh my! A limited budget couldn’t stop Florence from conducting excellent science and gaining new insights into gray whale fine-scale foraging. On Thursday afternoon, she will present Go-Pros, kayaks and gray whales: Linking fine-scale whale behavior with prey distributions on a shoestring budget, and share her findings, which she was able to pull off with minimal funds, creative study design, and a positive attitude. (Session: Foraging Ecology Speed Talks; Time: 1:55 pm)

Additional Oregon State University students presenting at the conference will include Michelle Fournet, Samara Haver, Niki Diogou, and Angie Sremba. We are thrilled to have such good representation at a meeting of this caliber! As you may know, we are all working on building the GEMM Lab’s social media presence and becoming more “twitterific”. So during the conference, please be sure to follow @GEMMLabOSU on twitter for live updates. Stay tuned!

Exploring the Coral Sea in Search of Humpbacks

By: Solène Derville, Entropie Lab, Institute of Research for Development, Nouméa, New Caledonia (Ph.D. student under the co-supervision of Dr. Leigh Torres)

Once again the austral winter is ending, and with it ends the field season for the scientific team studying humpback whales in New Caledonia. Through my PhD, I have become as migratory as my study species so this is also the time for me to fly back to Oregon for an intense 3 months of data analysis at the GEMM Lab. But before packing, it is time for a sum-up!

In 2014, the government of New Caledonia has declared all waters of the Economic Exclusive Zone to be part of a giant marine protected area: the Natural Park of the Coral Sea. These waters are seasonally visited by a small and endangered population of humpback whales whose habitat use patterns are poorly known. Indeed, the park spans more than 1.3 million km2 and its most remote and pristine areas therefore remained pretty much unexplored in terms of cetacean presence… until recently.

In 2016, the project WHERE “Humpback Whale Habitat Exploration to improve spatial management in the natural park of the CoRal Sea” was launch by my PhD supervisor, Dr. Garrigue, and I, to conduct surveys in remote reefs, seamounts and shallow banks surrounding New Caledonia mainland. The aim of the project is to increase our understanding of habitat use and movements of humpback whales in breeding grounds over a large spatial scale and predict priority conservation areas for the park.

Fig. 1. A humpback whale with our research vessel, the oceanographic vessel Alis, in the background.

This season, three specific areas were targeted for survey during the MARACAS expeditions (Marine Mammals of the Coral Sea):

– Chesterfield and Bellona reefs that surround two huge 30- to 60m-deep plateaus and are located halfway between New Caledonia and Australia (Fig. 4). Considered as part of the most pristine reefs in the Coral Sea, these areas were actually identified as one of the main hotspots targeted by the 19th century commercial whaling of humpback whales in the South Pacific (Oremus and Garrigue 2014). Last year’s surveys revealed that humpback whales still visit the area, but the abundance of the population and its connection to the neighboring breeding grounds of New Caledonia and Australia is yet to establish.

Fig. 2. The tiny islands along the Chesterfield and Bellona reefs also happen to host nesting sites for several species of boobies and terns. Here, a red-footed booby (Sula sula).

– Walpole Island and Orne bank are part of the shallow areas East of the mainland of New Caledonia (Fig. 4), where several previously tagged whales were found to spend a significant amount of time. This area was explored by our survey team for the first time last year, revealing an unexpected density of humpback whales displaying signs of breeding (male songs, competitive groups) and nursing activity (females with their newborn calf).

Fig. 3. The beautiful cliffs of Walpole Island rising from the Pacific Ocean.

Antigonia seamount, an offshore breeding site located South of the mainland (Fig. 4) and known for its amazingly dense congregations of humpback whales.  The seamount rises from the abyssal seabed to a depth of 60 m, with no surfacing island or reef to shelter either the whales or the scientists from rough seas.

Fig. 4. Map of the New Caledonia Economic Exclusive Zone (EEZ) and the project WHERE study areas (MARACAS expeditions).

During our three cruises, we spent 37 days at-sea while a second team continued monitoring the South Lagoon breeding ground. Working with two teams at the same time, one covering the offshore breeding areas and the other monitoring the coastal long-term study site of the South Lagoon, allowed us to assess large scale movements of humpback whales within the breeding season using photo-ID matches. This piece of information is particularly important to managers, in order to efficiently protect whales both within their breeding spots, and the potential corridors between them.

So how would you study whales over such a large scale?

Well first, find a ship. A LARGE ship. It takes more than 48 hours to reach the Chesterfield reefs. The vessel needs to carry enough gas necessary to survey such an extensive region, plus the space for a dinghy big enough to conduct satellite tagging of whales. All of this could not have been possible without the Amborella, the New Caledonian governement’s vessel, and the Alis, a French oceanographic research vessel.

Second, a team needs to be multidisciplinary. Surveying remote waters is logistically challenging and financially costly, so we had to make it worth our time. This season, we combined 1) photo-identification and biopsy samplings to estimate population connectivity, 2) acoustic monitoring using moored hydrophone (one of which recorded in Antigonia for more than two months, Fig. 5), 3) transect lines to record encounter rates of humpback whales, 4) in situ oceanographic measurements, and finally 5) satellite tracking of whales using the recent SPLASH10 tags (Wildlife Computers) capable of recording dive depths in addition to geographic positions (Fig. 6).

Fig. 5. Claire, Romain and Christophe standing next to our moored hydrophone, ready for immersion.

Satellite tracks and photo-identification have already revealed some interesting results in terms of connectivity within the park and with neighboring wintering grounds.

Preliminary matching of the caudal fluke pictures captured this season and in 2016 with existing catalogues showed that the same individuals may be resighted in different regions of the Park. For instance, some of the individuals photographed in Chesterfield – Bellona, had been observed around New Caledonia mainland in previous years! This match strengthens our hypothesis of a connection between Chesterfield reef complex and New Caledonia.

Yet, because the study of whale behavior is never straightforward, one tagged whale also indicated a potential connection between Chesterfield-Bellona and Australia East coast (Fig. 6). This is the first time a humpback whale is tracked moving between New Caledonia and East Australia within a breeding season. Previous matches of fluke catalogues had shown a few exchanges between these two areas but these comparisons did not include Chesterfield. Is it possible that the Chesterfield-Bellona coral reef complex form a connecting platform between Australia and New Caledonia? The matching of our photos with those captured by our Australian colleagues who collected data at the Great Barrier Reef  in 2016 and 2017 should help answer this question…

Fig. 6. “Splash” was tagged in Chesterfield in August and after spending some time in Bellona it initiated a migration south. Seamounts seem to play an important role for humpback whales in the region, as “Splash” stopped on Kelso and Capel seamount during its trip. It reached the Australian coast a couple of days ago and we are looking forward to discover the rest of its route!

While humpback whales often appear like one of the most well documented cetacean species, it seems that there is yet a lot to discover about them!

Acknowledgements:

These expeditions would not have been possible without the financial and technical support of the French Institute of Research for Development, the New Caledonian government, the French  Ministère de la Transition Ecologique et Solidaire, and the World Wide Fund for Nature. And of course, many thanks to the Alis and Amborella crews, and to our great fieldwork teammates: Jennifer Allen, Claire Bonneville, Hugo Bourgogne, Guillaume Chero, Rémi Dodémont, Claire Garrigue, Nicolas Job, Romain Le Gendre, Marc Oremus, Véronique Pérard, Leena Riekkola, and Mike Williamson.

Fig. 7A. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).
Fig. 7B. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).
Fig. 7C. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).