There is no such thing as “throwing it away”: Why I try to reduce my plastic consumption

By Dawn Barlow, MSc student, Department of Fisheries and Wildlife

Several years ago, I had a profound experience on a remote little coral island in the Kingdom of Tonga, in the middle of the South Pacific. I was a crew member aboard a 46’ sailboat, traveling in Tonga and Fiji. This trip was a time when I became very aware of my consumption because when living on a boat, you carry your waste with you. The South Pacific is a region of little islands scattered across wide ocean spaces, and my eyes were opened to island culture. An island is analogous to a large boat—your waste cannot go far. The idea of “throwing it away” began to seem suspect. Does anything really “go away”?

A seemingly pristine beach on Tungua Island, Kingdom of Tonga. Upon closer inspection, we realized the volume of plastics that could be found even on an island this remote. Photo by D. Barlow.

After spending a night at anchor in the Kingdom of Tonga when I listened through the hull to signing humpback whales and felt their deep tones vibrate our mast, I thought I was in a place as pure and untouched as I would ever experience. The next morning, we ventured to shore on an island that we could circumnavigate in less than an hour on foot. But the soft sand was strewn with more than just conch and cowrie shells. It was also strewn with plastic. I began to pick up the trash items on the beach, and before long I had a large bag filled to the brim with plastic. The captain humored me when I wanted to bring it back to the boat. But what was I going to do with it then? These remote island places have very little infrastructure—they can’t recycle it there. So should I take it to another island where it would likely get barged out and dumped back in the ocean? Or a landfill? What struck me most was the realization that none of these products were manufactured on these islands. Some of this plastic may have been imported to the nearest island with a town or city, while some likely had drifted across the sea to this landing spot. All the plastics that I picked up on that one, small island were just a tiny portion of ocean plastic that wash ashore on the world’s beaches, a tiny glimpse of a much larger issue.

Eight million tons of plastics make their way into the oceans each year. Let that number sink in. There is no such thing as “throwing it away”, because “away” does not exist. “Away” is the ocean.

“What lies under”. Image credit: Ferdi Rizkiyanto.

Before sitting down to write this, I participated in a beach cleanup event here in my local community in Newport, Oregon. Today along the whole Oregon Coast, over 3,000 volunteers removed more than 15,000 pounds of litter and marine debris from the coastal places they love. A few weeks ago Surfrider Foundation screened the documentary Straw, directed by Linda Booker. Following the well-attended screening, a panel of community members from Surfrider, the Oregon Coast Aquarium, and Thomson Sanitary Services answered questions from the audience. In a lively discussion, we learned about why China is no longer accepting our recyclables and consequently we can only recycle plastics #1 and #2 here in Oregon, about how marine animals are rehabilitated after becoming entangled in plastic waste, about how Surfrider is encouraging local businesses to switch to paper straws and only offer them by request. As daunting as it is to think about the scale of our plastic consumption and the damage it causes, I am encouraged by the engagement and bottom-up movement in my community.

My life is shaped by the ocean—it is my inspiration, my work, my passion, my place of adventure and joy, the place that humbles me and heals me. Imagining the relationship between the products I use and the ocean is what makes me think twice before consuming. If I am driving in my car and want to stop for coffee but don’t have a reusable mug with me, I consider “if I were on a boat, would I drink coffee out of a single-use cup and then throw it away, toss it over the rail?” Of course not. So I invite you to think about the plastic in your life—it is everywhere. Think about how that plastic relates to what you love. Will it make its way into the stomach of a baby albatross, a sea turtle, the filter-feeding shellfish and large predatory fish that you love to eat?

Lifestyle changes can be simple and impactful. As a consumer, use your purchase power—when you have the option to buy a product wrapped in plastic or one that is not, opt for no plastic. Show manufacturers what you value. Bring reusable bags to the grocery store. Use waxed paper instead of plastic saran wrap. Talk to others, share your choices with them, encourage them to minimize their plastic use. And if you need context or motivation, imagine the relationship between the products you consume and the places that you love.

 

What REALLY is a Wildlife Biologist?

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The first lecture slide. Source: Lecture1_Population Dynamics_Lou Botsford

This was the very first lecture slide in my population dynamics course at UC Davis. Population dynamics was infamous in our department for being an ultimate rite of passage due to it’s notoriously challenge curriculum. So, when Professor Lou Botsford pointed to his slide, all 120 of us Wildlife, Fish, and Conservation Biology majors, didn’t know how to react. Finally, he announced, “This [pointing to the slide] is all of you”. The class laughed. Lou smirked. Lou knew.

Lou knew that there is more truth to this meme than words could express. I can’t tell you how many times friends and acquaintances have asked me if I was going to be a park ranger. Incredibly, not all—or even most—wildlife biologists are park rangers. I’m sure that at one point, my parents had hoped I’d be holding a tiger cub as part of a conservation project—that has never happened. Society may think that all wildlife biologists want to walk in the footsteps of the famous Steven Irwin and say thinks like “Crikey!”—but I can’t remember the last time I uttered that exclamation with the exception of doing a Steve Irwin impression. Hollywood may think we hug trees—and, don’t get me wrong, I love a good tie-dyed shirt—but most of us believe in the principles of conservation and wise-use A.K.A. we know that some trees must be cut down to support our needs. Helicoptering into a remote location to dart and take samples from wild bear populations…HA. Good one. I tell myself this is what I do sometimes, and then the chopper crashes and I wake up from my dream. But, actually, a scientist staring at a computer with stacks of papers spread across every surface, is me and almost every wildlife biologist that I know.

The “dry lab” on the R/V Nathaniel B. Palmer en route to Antarctica. This room full of technology is where the majority of the science takes place. Drake Passage, International Waters in August 2015. Source: Alexa Kownacki

There is an illusion that wildlife biologists are constantly in the field doing all the cool, science-y, outdoors-y things while being followed by a National Geographic photojournalist. Well, let me break it to you, we’re not. Yes, we do have some incredible opportunities. For example, I happen to know that one lab member (eh-hem, Todd), has gotten up close and personal with wild polar bear cubs in the Arctic, and that all of us have taken part in some work that is worthy of a cover image on NatGeo. We love that stuff. For many of us, it’s those few, memorable moments when we are out in the field, wearing pants that we haven’t washed in days, and we finally see our study species AND gather the necessary data, that the stars align. Those are the shining lights in a dark sea of papers, grant-writing, teaching, data management, data analysis, and coding. I’m not saying that we don’t find our desk work enjoyable; we jump for joy when our R script finally runs and we do a little dance when our paper is accepted and we definitely shed a tear of relief when funding comes through (or maybe that’s just me).

A picturesque moment of being a wildlife biologist: Alexa and her coworker, Jim, surveying migrating gray whales. Piedras Blancas Light Station, San Simeon, CA in May 2017. Source: Alexa Kownacki.

What I’m trying to get at is that we accepted our fates as the “scientists in front of computers surrounded by papers” long ago and we embrace it. It’s been almost five years since I was a senior in undergrad and saw this meme for the first time. Five years ago, I wanted to be that scientist surrounded by papers, because I knew that’s where the difference is made. Most people have heard the quote by Mahatma Gandhi, “Be the change that you wish to see in the world.” In my mind, it is that scientist combing through relevant, peer-reviewed scientific papers while writing a compelling and well-researched article, that has the potential to make positive changes. For me, that scientist at the desk is being the change that he/she wish to see in the world.

Scientists aboard the R/V Nathaniel B. Palmer using the time in between net tows to draft papers and analyze data…note the facial expressions. Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

One of my favorite people to colloquially reference in the wildlife biology field is Milton Love, a research biologist at the University of California Santa Barbara, because he tells it how it is. In his oh-so-true-it-hurts website, he has a page titled, “So You Want To Be A Marine Biologist?” that highlights what he refers to as, “Three really, really bad reasons to want to be a marine biologist” and “Two really, really good reasons to want to be a marine biologist”. I HIGHLY suggest you read them verbatim on his site, whether you think you want to be a marine biologist or not because they’re downright hilarious. However, I will paraphrase if you just can’t be bothered to open up a new tab and go down a laugh-filled wormhole.

Really, Really Bad Reasons to Want to be a Marine Biologist:

  1. To talk to dolphins. Hint: They don’t want to talk to you…and you probably like your face.
  2. You like Jacques Cousteau. Hint: I like cheese…doesn’t mean I want to be cheese.
  3. Hint: Lack thereof.

Really, Really Good Reasons to Want to be a Marine Biologist:

  1. Work attire/attitude. Hint: Dress for the job you want finally translates to board shorts and tank tops.
  2. You like it. *BINGO*
Alexa with colleagues showing the “cool” part of the job is working the zooplankton net tows. This DOES have required attire: steel-toed boots, hard hat, and float coat. R/V Nathaniel B. Palmer, Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

In summary, as wildlife or marine biologists we’ve taken a vow of poverty, and in doing so, we’ve committed ourselves to fulfilling lives with incredible experiences and being the change we wish to see in the world. To those of you who want to pursue a career in wildlife or marine biology—even after reading this—then do it. And to those who don’t, hopefully you have a better understanding of why wearing jeans is our version of “business formal”.

A fieldwork version of a lab meeting with Leigh Torres, Tom Calvanese (Field Station Manager), Florence Sullivan, and Leila Lemos. Port Orford, OR in August 2017. Source: Alexa Kownacki.

Skype a Scientist – Are you smarter than a middle schooler?

By Florence Sullivan, MSc

What do baby whales eat?

Does the mom whale take care of the baby whale alone?

How do whales communicate?

What are their behaviors?

These are the questions 4th grade students half a world away asked me.  They are studying biodiversity and were very curious to meet a real life scientist.  It was 2:00pm on a Tuesday here in Newport, OR, while in Australia, this classroom full of students was sitting in their 9:00am Wednesday science class.  We had an hour-long conversation about gray whale behaviors, habitat, life cycle, and general biology – all thanks to the wonders of science, technology and the computer program, Skype. The next day, I did it all again, and Skyped in to a classroom in British Columbia, to field questions about gray whales, right whales and science careers from a group of enthusiastic 5th and 6th grade students.

 

A class of Australian 4th graders had many imaginative questions for me through the Skype a Scientist Program.

But how in the world did I end up answering questions over Skype for a classroom full of kids in the first place? Like many good things, it began with a conversation.  During the 2016 USA election cycle, it became apparent that many people in this country distrust scientists. Sarah McAnulty, a PhD student at the University of Connecticut who studies the immune system of bob tail squid, had already been engaging in informal science communication through a profile on tumblr.  But posting things on tumblr is like preaching to the choir – your audience tends to be people who are already interested in your subject. If the problem is trying to change the public perception of scientists from aloof and insular to trustworthy and approachable, you need to start by finding people who have a lot of questions, and few pre-existing prejudices.  Who fits the bill perfectly? Kids!

After conversations with colleagues, she came up with the idea of using Skype to reach classrooms of students outside of the range where scientists usually congregate (large cities and universities).  Sarah started by connecting a handful of UConn colleagues with K-12 teachers through Facebook, but the idea quickly gained steam through mentions at a scientific conference, posts on the ‘March for Science’ Facebook group, media coverage, and word-of-mouth sharing between colleagues on both the teaching and the research side of the story.  Now, there is a full-fledged website (https://www.skypeascientist.com/) where teachers and scientists can sign up to be matched based on availability, topic, and sometimes, demographic.  When pairing classrooms and scientists, Sarah makes an effort for minority students (whether this means race, gender, disability, language, or other) to see themselves represented in the scientists they get to talk to, if possible.  Representation matters –we are beyond the age of old white men in lab coats being the only ‘real scientists’ represented in media, but unfortunately, the stereotype is not dead yet! In less than a year, the program has grown to over 1900 scientists, with new fields of expertise being added frequently as people spread the word and get interested.  The program has been, and promises to continue being, an excellent resource for teachers who want to show the relevance of the subjects being discussed in their classrooms. As evidenced by the fact that I spoke with a classroom in Australia, this is a global program – check out the maps below to see where students and scientists are coming from!

This map shows the locations of all participating classrooms, current on Oct 12, 2017.
This map shows the locations of all participating scientists, current on October 22, 2017.

As for myself, I got involved because my lab mate, Alexa, mentioned how much fun she had Skyping with students.  The sign-up process was incredibly easy, and when I got matched with two classrooms, the organizers even provided a nice mad-libs style ‘fill in the blank’ introduction letter so that I didn’t waste time agonizing over how to introduce myself.

Introductory Mad-libs for scientists. Courtesy of the Skype a Scientist program.

I sent the classrooms the youtube video of my field work, and a couple of these blog posts, and waited to hear back.  I was very impressed with the 5th/6th grade class from British Columbia because the teacher actually let the students take the lead from the get-go.  One of the students replied to my email, told me what they were studying, and started the process of scheduling a meeting time that would work for both of us. When I called in, two other students took the reins, and acted as spokespeople for the rest of their classmates by repeating questions from the back of the room so that I could hear everything clearly. It was so fun to see and hear the enthusiasm of the students as they asked their questions.  Their deep curiosity and obvious excitement about the subject matter was contagious, and I found my own tone, body language, and attitude shifting to match theirs as I helped them discover the building blocks of marine ecology that I have long accepted as normal. This two way street of learning is a good reminder that we all start somewhere.

If you are interested in the program at all, I encourage you to sign up at this link: (https://www.skypeascientist.com/). Who knows, engaging with kids like this just might remind you of the innocent curiosity of childhood that brought you to your scientific career in the first place.

 

Here are some of my favorite question that I was asked, and the responses I gave:

  • How do gray whales communicate?

With songs and underwater sounds! Check out this great website for some great examples, and prepare to be amazed! (I played the Conga and the belch-like call during the skype session, much to the amusement of the students)  https://www.sanignaciograywhales.org/project/acoustics/

  • What do baby whales eat?

Whales are mammals just like us, so believe it or not, baby whales drink their mother’s milk!

  • How long have you been a marine special ecologist for?

My favorite bit here was the mis-spelling, which made me a ‘special’ ecologist instead of a ‘spatial’ ecologist.  So I talked about how spatial ecology is a special type of ecology where we look at how big things move in the ocean!

  • My question is, can a grey whale bite people if people come close to them?
    This was a chance to show off our lab baleen samples!  I also took the time to look this up, and it turns out that bite is defined as “using teeth to cut into something” and a gray whale doesn’t have teeth!  Instead, they have baleen, which they use to sieve stuff out of the water.  So I don’t think you need to worry about getting bitten by a gray whale. That being said, it’s important not to get close to them, because they are so much bigger than us that they could hurt us on accident.

 

  • When you go out to see the whales, why don’t you use slightly bigger boats so you don’t flip over if the whale gets too close to you, or when you get to close to the whale?
    Our research kayak is a never-ending delight. It’s less expensive than a bigger boat, and doesn’t use fossil fuels. We want to be quiet in the water and not disturb the whale, and actively avoid getting within 100 yards so there shouldn’t be any danger. Sometimes the whales surprise us though, and we have to be careful. In this case, everyone has safety training and is able to rescue themselves if the boat should flip.

(This led to an entertaining discussion of field safety, and the appalling idea that I would make my interns jump out of the kayak into cold Pacific water on purpose during safety training)

There were many more questions, but why don’t you give the program a try, and see what kind of questions you get to answer?!

Safety First! 

Conservation at the Science-to-Policy Interface

By Dominique Kone, Masters Student in Marine Resource Management

How can I practice conservation? As an early-career professional and graduate student, this is the very question I ask myself, constantly. In such an interdisciplinary field, there are several ways someone can address issues and affect change in conservation, even if they don’t call themselves a conservationist. However, there’s no one-size-fits-all method. A marine ecologist will likely try to solve a problem differently than a lawyer, advocate, journalist and so forth. Therefore, I want to explain how I practice conservation, how I develop solutions, and how this has factored into my decision to come to grad school and apply my trade to our sea otter project.

Jane Lubchenco – marine ecologist and environmental scientists – replanting coral. Photo Credit: Oregon State University.

Like many others in conservation, I have a deep appreciation for the field of ecology. Yet, I also really enjoy being involved in policy and management issues. Not just how they’re decided upon, but what factors and variables go into those decisions, and ultimately how those choices impact the marine environment. But most importantly, I’m curious about how these two arenas – science and policy – intersect and complement each other. Yet again, there are an endless number of ways one can practice conservation at the science-policy interface.

Think of this science-policy space as a spectrum or a continuum, if you will. For those who fall on one end of the spectrum, their work may be heavily dominated by pure science or research. While those who fall on the other end, conduct more policy-oriented work. And those in the middle do some combination of the two. Yet, what connects us all is the recognition of the value in science-based decision-making. Because a positive conservation result relies on both elements.

Infographic demonstrating the interface between conservation science and policy. Photo Credit: ZSL Institute of Zoology.

I’m fascinated by this science- policy space and the role that science can play in informing the management and protection of at-risk marine species and ecosystems. From my perspective, scientific evidence and the scientific community are essential resources to help society make better-informed decisions. However, we don’t always take advantage of those resources. On the policy end of the spectrum, there may be a lack of understanding of complex scientific concepts. Yet, on the other end, scientists may be inadvertently making their research inaccessible or they may not fully understand the data or knowledge needs of the decision-makers. Therefore, research that was meant to be useful, sometimes completely misses the mark, and therefore has minimal conservation impact.

Recognizing this persistent problem, I practice conservation as a facilitator, where I identify gaps in knowledge and strategically develop science-based solutions aimed at filling those gaps and addressing specific policy or management issues. In my line of work, I’m dedicated to working within the scientific community to develop targeted research projects that are well placed and thought-out to enable a greater impact. While I associate myself with the science end of the spectrum, I also interact with decision-makers on the other end to better understand the various factors and variables considered in decisions. This requires me to have a deeper understanding of the process by which decision-makers formulate policies and management strategies, how science fits within those decision-making process, and any potential gaps in knowledge or data that need to be filled to facilitate responsible decisions.

A commercial fishing vessel. Photo Credit: NOAA Fisheries.

A simple example of this is the use of stock assessments in the management of commercially important fisheries. Catch limits may seem like simple policies, but we often do not think about the “science behind the scenes” and the multitude of data needed by managers to set those limits. Managers must consider many variables to determine catch limits that will not result in depleted stocks. Without robust scientific data, many of these fisheries catch limits would be too high or too low.

Science protest in Washington, DC. Photo Credit: AP Photo/Marcio Jose Sanchez.

This may all sound like theoretical mumbo jumbo, but it is real, and I will apply this crossover between science and policy in my thesis. The potential reintroduction of sea otters to Oregon presents a multitude of challenges, but the challenge is exactly why I came to grad school in the first place! This project will allow me to take what I’ve learned and develop research questions specifically aimed at providing data and information that managers must consider in their deliberations of sea otter reintroduction. In this project I will be pushed to objectively assess and analyze – as a scientist – a pressing conservation topic from a variety of angles, gain advice from other experts, and develop and execute research that will influence policy decisions. This project provides the perfect opportunity for me to exercise my creativity, allow my curiosity to run rampant, and practice conservation in my own unique way.

 

Photo Credit: Smithsonian.

Everyone processes and solves problems differently. For those of us practicing conservation, we each tackle issues in our own way depending on where we fall within the science-to-policy spectrum. For me, I address issues as a scientist, with my techniques and strategies derived from a foundation in the political and management context.

Additional Resources:

Bednarek et al. 2015. Science-policy intermediaries from a practitioner’s perspective: The Lenfest Ocean Program experience. Science and Public Policy. 43(2). p. 291-300. (Link here)

Lackey, R. T. 2007. Science, Scientists, and Policy Advocacy. Conservation Biology. 21(1). p. 12-17. (Link here)

Cortner, H. J. 2000. Making science relevant to environmental policy. Environmental Science & Policy. 3(1). p. 21-30. (Link here)

Twitterific: The Importance of Social Media in Science

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

How do you create the perfect chemical formula for social media in science? (Photo Source: The Royal Society of Victoria)

There’s a never-ending debate about how active we, as scientists, should be on social media. Which social media platforms are best for communicating our science? When it comes to posting, how much is too much? Should we post a few, critical items that are highly pertinent, or push out everything that’s even closely related to our focus? Personally, my deep-rooted question revolves around privacy. What aspects of my life (and thereby my science), do I keep to myself and what do I share? I asked that exact question at a workshop last year, and I have some main takeaways.

At last year’s Southern California Marine Mammal Workshop, there was a very informative session about the role of media in science. More specifically, there was a talk on “Social Media and Communications Hot Topics” by Susan Poulton, the Chief Digital Officer of the Franklin Institute science museum in Philadelphia.  She emphasized how trust factors into our media connections and networks. What was once communicated in person or on paper, has given way to this idea of virtual connections. We all have our own “bubbles”. Susan defined “bubbles” as the people who we trust. We have different classifications of bubbles: the immediate bubble that consists of our friends, family, and close colleagues, the more distant bubble that has your friends of friends and distant colleagues, and the enigma bubble that has people you find based on computer algorithms that the computer thinks you’ll find relative. Susan brought up the point that many of us stay within our immediate bubble; even though we may discuss all of the groundbreaking science with our friends and coworkers, we never burst that bubble and expand the reaches of our science into the enigma bubble. I frequently fall into this category both intentionally and unintentionally.

Coworkers from NOAA’s Southwest Fisheries Science Center attending the Southern California Marine Mammal Workshop 2017. Pictured from left to right: Alexa, Michelle, Holly, and Keiko. (Photo source: Michelle Robbins.)

Many of us want to be advocates for our science. Education and outreach are crucial for communicating our message. We know this. But, can we keep what little personal life we have outside of science, private? The short of the long of it: No. Alisa Schulman-Janiger, another scientist and educator on the panel, reinforced this when she stated that she keeps a large majority of her social media posts as “public” to reach more people. Queue me being shocked. I have a decent social media presence. I have a private Facebook account, but public Twitter and LinkedIn accounts that I use only for science/academics/professional stuff, public Instagram, YouTube, and Flickr accounts that are travel and science-related, as well as a public blog that is a personal look at my life as a scientist who loves to travel. I tell you this because I am still incredibly skeptical about privacy; I keep my Facebook page about as private as possible without it being hidden. Giving up that last bit of my precious, immediate bubble and making it for the world to see feels invasive. But, I’m motivated to make sure my science reaches people who I don’t know. Giving science a personal story is what captures people; it’s why we read those articles in our Facebook feeds, and click on the interesting articles while scrolling through Twitter. Because of this, I’ve begun making more, not all, of my Facebook posts public. I’m more active on Twitter. I’m writing weekly blog posts again (we’ll see how long I can keep that up for). I’m trying to find the right balance that will keep my immediate bubble still private enough for my peace of mind and public enough that I am presenting my science to networks outside of my own—pushing through to the enigma bubble. Bubbles differ for each of us and we have to find our own balance. By playing to the flexibility of our bubbles, we can expand the horizons of our research.

Alexa at an Education/Outreach event, responding to a young student asking, “Why didn’t you bring this seal when it was alive?” (Photo source: Lori Lowder).

This topic was recently broached while attending my first official GEMM Lab meeting. Leigh brought up social media and how we, as a lab, and as individuals, should make an effort to shine light on all the amazing science that we’re a part of. We, as a lab, are trying to be more present. Therefore, in addition to these AMAZING weekly blog posts varying from highly technical to extremely colloquial, the lab will be posting more on Twitter. And that comes to the origin of this week’s blog post’s title. Leigh said that we should be “Twitterific” and I can’t help but feel that adjective perfectly suits our current pursuit. Here’s to being Twitterific!

With all that being said, be sure to follow us on: Twitter, YouTube, and here (don’t forget to follow us by entering your email address on the lefthand side of the page), of course.

New steps towards community engagement: introducing high schoolers to the field

By Florence Sullivan, MSc, GEMM Lab Research Assistant

This summer, I had the pleasure of returning to Port Orford to lead another field season of the GEMM Lab’s gray whale foraging ecology research project.  While our goal this summer was to continue gathering data on gray whale habitat use and zooplankton community structure in the Port Orford region, we added in a new and exciting community engagement component: We integrated local high school students into our research efforts in order to engage with the local community to promote interest in the OSU field station and the research taking place in their community. Frequent blog readers will have seen the posts written by this year’s interns (Maggie O’Rourke Liggett, Nathan Malamud, and Quince Nye) as they described how they became interns, their experience doing fieldwork, and some lessons they’ve learned from the project. I am very impressed with the hard work and effort that all three of them put into making this field season a success.  (Getting out of a warm bed, and showing up at the field station at 6am sharp for five weeks straight is no easy feat for high-schoolers or an undergrad student during summer break!)

Quince hard at work scanning the horizon for whale spouts. photo credit: Alexa Kownacki

During the month of August, our team collected the following data on whale distribution and behavior:

  •  Spent 108 hours on the cliff looking for whales
  • Spent 11 hours actively tracking whales with the theodolite
  • Collected 19 whale tracklines
  • Identified 15 individual whales using photo-ID – Two of those whales came back 3 times each, and one of them was a whale nick-named “Buttons” who we had tracked in 2016 as well.

We also collected data on zooplankton – gray whale prey – in the area:

  • Collected 134 GoPro videos of the water column at the 12 kayak sample sites
  • Did approximately 147 zooplankton net tows
  • Collected 64 samples for community analysis to see what species of zooplankton were present
  • Collected 115 samples for energetic analysis to determine how many calories can be derived from each zooplankton
The 2017 field team. From left to right: Tom Calvanese (Field Station Manager), Florence Sullivan (Project Lead), Quince Nye, Maggie O’Rourke-Liggett, and Nathan Malamud. Photo credit: Alexa Kownacki

Since I began this project in 2015, I have been privileged to work with some truly fantastic interns.  Each year, I learned new lessons about how to be an effective mentor, and how to communicate our research goals and project needs more clearly. This year was no exception, and I worked hard to bring some of the things I’ve learned into my project planning.  As the team can tell you, science communication, and the benefits of building good will and strong community relationships were heavily emphasized over the course of the internship.  Everyone was encouraged to use every opportunity to engage with the public, explain our work, and pass on new things they had learned.  Whenever the team encountered other kayakers out on the water, we took the time to share any cool zooplankton samples we gathered that day, and explain the goals of our research.  Maggie and I also took the opportunity to give a pair of evening lectures at Humbug Mountain State Park, which were both well attended by curious campers.

Florence and Maggie give evening lectures at Humbug Mountain State Park

In addition, the team held a successful final community presentation on September 1 at the Port Orford Field Station that 45 people attended!  In the week leading up to the presentation, Quince and Nathan spent many long hours working diligently on the powerpoint presentation, while Maggie put together a video presentation of “the intern experience” (Click here for the video showcased on last week’s blog).  I am incredibly proud of Nathan and Quince, and the clear and confident manner in which they presented their experience to the audience who showed up to support them.  They easily fielded the following questions:

Q: “How do you tell the difference between a whale that is searching or foraging?”

A: When we look at the boundaries of our study site, a foraging whale consistently comes up to breathe in the same spot, while a searching whale covers a lot of distance going back and forth without leaving the general area.

Q: “How do we make sure that this program continues?”

A: Stay curious and support your students as they take on internships, support the field station as it seeks to provide resources, and if possible, donate to funds that raise money for research efforts.

Nathan talks about the plankton results during the final community presentation. photo credit: Alexa Kownacki
The audience during the final community presntation. photo credit: Alexa Kownacki
Quince and Nathan answer questions at the end of the community presentation. photo credit: Alexa Kownacki

When communicating science, it is important to results into context.  In addition to showcasing the possibilities of excellent research with positive community support, and just how much a trio of young people can grow over the course of 6 weeks, this summer has highlighted the value of long term monitoring studies, particularly when studying long-lived animals such as whales. We saw far fewer whales this summer than compared to the two previous years, and the whales spent much less time in the Port Orford area (Table 1). As a scientist, knowing where whales are not (absence data) is just as important as knowing where whales are (presence data), and these marked differences drive our hypotheses! What has changed in the system? What can explain the differences in whale behavior between years?  Does it have to do with food quality or availability?  (This is why we have been gathering all those zooplankton samples.) Does it have to do with other oceanographic factors or human activities?

Table 1. Summary of whale tracking efforts for the three seasons of field work in Port Orford.   Notice how in 2017 we only collected 194 whale location points (theodolite marks). This is about 92% less than in the previous years.

2015 2016 2017
Hours spent watching 72:49 148:30 108
Hours spent tracking 80:39* 82:30 11
Number of individuals 43 50 15
Number of theodolite marks 2483 2414 194

*we often tracked more than one individual simultaneously in 2015

Long term monitoring projects give us a chance to notice differences between years, and ask questions about what are normal fluctuations in the system, and what are abnormal. On top of that, projects like this create the opportunity for additional internships, and to mentor more students in the scientific method of investigation.  There is so much still to be explored in the Port Orford ecosystem, and I truly hope this program is able to continue.  If you are interested in making a monetary contribution to sustain this research and internship program, donations can be accepted here (gemm lab fund) and here (field station fund).

Quince records zooplankon sample weights in the wet lab.
Quince sorts through a zooplankton sample in the wet lab.
Nathan stores zooplankton community analysis samples
Maggie and Nathan out in the kayak
Quince and Maggie in the kayak
Maggie, Florence and Quince enjoy the eclipse!
Quince and Maggie bundle up on the cliff as they watch for whales.
Nathan and Quince organize data on the computer at the end of the day.
Quince and Nathan build sand castles as we wait for the fog to clear before launching the research kayak

This research and  student internships would not have been possible without the generous support from Oregon Sea Grant, the Oregon Coast STEM hub, the Port Orford Field Station, South Coast Tours, partnerships with the Bernard and Chapman labs, the OSU Marine Mammal Institute, and the Geospatial Ecology of Marine Megafauna Lab.

Through the intern’s eyes; a video log of the 2017 gray whale foraging ecology project.

By: Maggie O’Rourke-Liggett, GEMM lab summer intern, Oregon State University

Enjoy this short video showcasing the intern experience from the gray whale foraging ecology project this summer. Check back next week for a recap of our preliminary results.

The passion of a researcher

By Quince Nye, GEMM Lab Summer Intern, Pacific High School Junior

I have spent a lot of my life surrounded by nature. I like to backpack, bike, dive, and kayak in these natural environments. I also have the luck of having parents who are always planning to take me on another adventure where I get to see nature and its inhabitants in ways most people don’t get to enjoy.

Through my backyard explorations, I have begun to realize that Port Orford has an amazing ecosystem in the coves and rivers that are very tied into our community. I’ve fished and swam in these rivers, gone on kayaking tours in these coves (with a great kayak company called South Coast Tours that we partner with), and I’ve seen the life that dwells in them.

Nathan and Maggie paddle out to Mill Rocks for early morning sample collection

Growing up in a school of less than 100 kids I have learned to never reject an opportunity to be a part of something bigger and learn from that experience. So when one of my close friends told me about an OSU project (a college I’m interested in attending) that needed interns to help collect data on gray whales, and kayak almost every day, I signed up without a doubt in my mind.

The team gets some good practice tracking Buttons (Whale #3).  Left to right; Quince, Nathan, Maggie, Florence.

Fast forward a month, and I wake up at 5:20 am. I eat breakfast and get to the Port Orford Field Station. We make a plan for the operations of both the kayak team and cliff team. Today, I’m part of the cliff team, so I head up above the station to Fort Point. Florence and I set up the theodolite and computer at the lookout point and start taking half hour watch shifts searching the horizon for the spout of a gray whale.  Sometimes you see one right away, but other times it feels like the whales are actively hiding from you. These are the times I wish Maggie was here with her endless supply of Disney soundtracks to help pass the hours.

Imitating a ship’s captain, Quince points toward our whale while shouting “Mark”.

A whale spouts out at Mill Rocks and starts heading across to the jetty. Hurray, its data collection time! I try to quickly move the cross-hairs of the theodolite onto the position of the whale using a set of knobs like those on an etch-a-sketch. As you may understand, it’s not an easy task at first but I manage to do it because I’ve been practicing for three weeks. I say “Mark!” cueing Florence to click a button in the program Pythagoras on the computer to record the whale’s position.

The left hand side of Buttons – notice the scatter of white markings on the upper back.

Meanwhile, Florence sees that the whale has two white spots where the fluke meets the knuckles. Those are identifying marks of the beloved whale, Buttons. This whale has been seen here since 2016 and is a fan favorite for our on-going research program. Florence gets just as excited every time and texts her eagerly awaiting interns of previous years all about the sighting. Of course Buttons is not the only whale to have identifying marks such as scars and pigmentation marks. This is why we make sure to get photos of the whales we spot, allowing us to do photo-ID analysis on them through comparison to our database of pictures from previous years.

Quince practices CPR protocol on a training mannequin on his first day.

So far I have gained skill after skill in this internship. I got CPR certified, took a kayak training class, learned how to use a theodolite, and have spent many educational (and frustrating) hours entering data in Excel. I joined the program because I was interested in all of these things. It surprised me that I was developing a relationship with the whales I’m researching. By the end of August I’m now sure that I will also know many of the whales by name. I will probably be much better at using an etch-a-sketch, and I will have had my first taste at what being a scientist is like. What I strive for, however, is to have the same look in my eyes that appears in Florence’s whenever a familiar whale decides to browse our kelp beds.

“Marching for Science” takes many forms

By Florence Sullivan, MSc student, Oregon State University.

Earth day is a worldwide event celebrated annually on April 22, and is typically observed with beach, park, or neighborhood clean ups, and outreach events sponsored by environmental groups.  Last year, environmentalists rejoiced when 195 nations signed the Paris Agreement – to “strengthen global response to the threat of climate change by keeping global temperature rise below 2 degrees C”.

GEMM Lab member Dawn Barlow helps carry the banner for the Newport, OR March for Science which over 600 people attended. photo credit: Maryann Bozza

This year, the enviro-political mood is more somber. Emotions in the GEMM Lab swing between anger and dismay to cautious optimism and hope. The anger comes from threatened budget cuts, the dismissal of climate science, and the restructuring of government agencies, while we find hope at the outpouring of support from our local communities, and the energy building behind the March for Science movement.

The Newport March for Science. photo credit: Maryann Bozza

What is perhaps most striking about the movement is how celebratory it feels. Instead of marching against something, we are marching FOR science, in all its myriad forms. With clever signs and chants like “The oceans are rising, and so are we”, “Science, not Silence”, and “We’re nerds, we’re wet, we’re really quite upset” (it rained on a lot of marches on Saturday) echoing around the globe, Saturday’s Marches for Science were a cathartic release of energy, a celebration of like-minded people.

Our competition room for NOSB 2017! Game officials are in the front of the picture, competitors at the first two desks, and parents, coaches and supporters in the back.

While millions of enthusiastic people were marching through the streets, I “Ran for Science” at the 20th annual National Ocean Science Bowl (NOSB) – delivering question sheets and scores between competitors and graders as 25 teams competed for the title of national champion! Over the course of the competition, teams of four high school students compete through rounds of buzzer-style multiple choice questions, worksheet style team challenge questions, and the Scientific Expert Briefing, a mock congressional hearing where students present science recommendations on a piece of legislation.  The challenges are unified with a yearly theme, which in 2017 was Blue Energy: powering the planet with our ocean.  Watching the students (representing 33 states!) compete is exciting and inspiring, because they obviously know the material, and are passionate about the subject matter.  Even more encouraging though, is realizing that not all of them plan to look for jobs as research scientists. Some express interest in the arts, some in policy, or teaching or engineering. This competition is not just about fostering the next generation of leading marine scientists, but rather about creating an ocean-literate, and scientifically-literate populace.  So, congratulations to Santa Monica High School, who took home the national title for the first time this year! Would you like to test your knowledge against some of the questions they faced? Try your luck here!

Santa Monica competes in the final round

The GEMM Lab also recently participated in the Hatfield Marine Science Center’s Marine Science Day.  It’s an annual open house where the community is invited to come tour labs, meet scientists, get behind the scenes, and learn about all the exciting research going on.  For us as researchers, it’s a great day to practice explaining our work and its relevance to many different groups, from school children to parents and grandparents, from artists to fishermen to teachers, fellow researchers, and many others.  This year the event attracted over 2,000 people, and the GEMM Lab was proud to be a part of this uniquely interactive day.  Outreach events like this help us feel connected to our community and the excitement present in all the questions field during this event reassure us that the public still cares about the work that we do.

Lab members Florence, Leila, and Dawn (L to R) answer questions from the public.

Our science is interdisciplinary, and we recognize the strength of multiple complimentary avenues of action to affect change.  If you are looking to get involved, consider taking a look at these groups:

500 Women Scientists: “working to promote a diverse and inclusive scientific community that brings progressive science-based solutions to local and global challenges.” Read their take on the March for Science.

314Action: starting from Pi (3.14), their mission is “to (1) strengthen communication among the STEM community, the public and our elected officials, (2) Educate and advocate for and defend the integrity of science and its use, (3) Provide a voice for the STEM community on social issues, (4) Promote the responsible use of data driven fact based approaches in public policy and (5) Increase public engagement with the STEM Community through media.”

She should run: “A movement working to create a culture that inspires women and girls to aspire towards public leadership. We believe that women of all backgrounds should have an equal shot at elected leadership and that our country will benefit from having a government with varied perspectives and experiences.” https://peoplesclimate.org/

And finally, The March for Science is finishing up it’s week of action, culminating in the People’s Climate March on April 29.

How will you carry the cause of science forward?

 

Oceanus Day Three: Dolphin Delights

by Florence Sullivan, MSc student

Our third day aboard the Oceanus began in the misty morning fog before the sun even rose. We took the first CTD cast of the day at 0630am because the physical properties of the water column do not change much with the arrival of daylight. Our ability to visually detect marine mammals, however, is vastly improved with a little sunlight, and we wanted to make the best use of our hours at sea possible.

Randall Munroe www.XKCD.com

Our focus on day three was the Astoria canyon – a submarine feature just off the Oregon and Washington coast. Our first oceanographic station was 40 miles offshore, and 1300 meters deep, while the second was 20 miles offshore and only 170 meters deep.  See the handy infographic below to get a perspective on what those depths mean in the grand scheme of things.  From an oceanographic perspective, the neatest finding of the day was our ability to detect the freshwater plume coming from the Columbia River at both those stations despite their distance from each other, and from shore! Water density is one of the key characteristics that oceanographers use to track parcels of water as they travel through the ocean conveyor belt. Certain bodies of water (like the Mediterranean Sea, or the Atlantic or Pacific Oceans) have distinct properties that allow us to recognize them easily. In this case, it was very exciting to “sea” the two-layer system we had gotten used to observing overlain with a freshwater lens of much lower salinity, higher temperature, and lower density. This combination of freshwater, saltwater, and intriguing bathymetric features can lead to interesting foraging opportunities for marine megafauna – so, what did we find out there?

Click through link for better resolution: Randall Munroe www.XKCD.com/1040/large

Morning conditions were almost perfect for marine mammal observations – glassy calm with low swell, good, high, cloud cover to minimize glare and allow us to catch the barest hint of a blow….. it should come as no surprise then, that the first sightings of the day were seabirds and tuna!

I didn't catch any photos of the Tuna, so here's some mola mola we spotted. photo credit: Florence Sullivan
I didn’t catch any photos of the tuna, so here’s some sunfish we spotted. photo credit: Florence Sullivan

One of the best things about being at sea is the ability to look out at the horizon and have nothing but water staring back at you. It really drives home all the old seafaring superstitions about sailing off the edge of the world.  This close to shore, and in such productive waters, it is rare to find yourself truly alone, so when we spot a fishing trawler, there’s already a space to note it in the data log.  Ships at sea often have “follower” birds – avians attracted by easy meals as food scraps are dumped overboard. Fishing boats usually attract a lot of birds as fish bycatch and processing leftovers are flushed from the deck.  The birders groan, because identification and counts of individuals get more and more complicated as we approach other vessels.  The most thrilling bird sighting of the day for me were the flocks of a couple hundred fork-tailed storm petrels.

Fork-tailed storm petrels
Fork-tailed storm petrels. photo credit: Florence Sullivan

I find it remarkable that such small birds are capable of spending 80% of their life on the open ocean, returning to land only to mate and raise a chick. Their nesting strategy is pretty fascinating too – in bad foraging years, the chick is capable of surviving for several days without food by going into a state of torpor. (This slows metabolism and reduces growth until an adult returns.)

Just because the bird observers were starting to feel slightly overwhelmed, doesn’t mean that the marine mammal observers stopped their own survey.  The effort soon paid off with shouts of “Wait! What are those splashes over there?!” That’s the signal for everyone to get their binoculars up, start counting individuals, and making note of identifying features like color, shape of dorsal fin, and swimming style so that we can make an accurate species ID. The first sighting, though common in the area, was a new species for me – Pacific white sided dolphins!

Pacific white sided dolphin
A Pacific white sided dolphin leaps into view. photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis

A pod of thirty or so came to ride our bow wake for a bit, which was a real treat. But wait, it got better! Shortly afterward, we spotted more activity off the starboard bow.  It was confusing at first because we could clearly see a lot of splashes indicating many individuals, but no one had glimpsed any fins to help us figure out the species. As the pod got closer, Leigh shouted “Lissodelphis! They’re lissodelphis!”  We couldn’t see any dorsal fins, because northern right whale dolphins haven’t got one! Then the fly bridge became absolute madness as we all attempted to count how many individuals were in the pod, as well as take pictures for photo ID. It got even more complicated when some more pacific white sided dolphins showed up to join in the bow-riding fun.

Northern right whale dolphins are hard to spot! photo credit: Florence Sullivan Taken under NMFS permit 16111 John Calambokidis
Northern right whale dolphins are hard to spot! photo credit: Florence Sullivan Taken under NMFS permit 16111 John Calambokidis

All told, our best estimates counted about 200 individuals around us in that moment. The dolphins tired of us soon, and things continued to calm down as we moved further away from the fishing vessels.  We had a final encounter with an enthusiastic young humpback who was breaching and tail-slapping all over the place before ending our survey and heading towards Astoria to make our dock time.

Humpback whale breach
Humpback whale breach. photo credit: Florence Sullivan. Taken under NMFS permit 16111 John Calambokidis

As a Washington native who has always been interested in a maritime career, I grew up on stories of The Graveyard of the Pacific, and how difficult the crossing of the Columbia River Bar can be. Many harbors have dedicated captains to guide large ships into the port docks.  Did you know the same is true of the Columbia River Bar?  Conditions change so rapidly here, the shifting sands of the river mouth make it necessary for large ships to receive a local guest pilot (often via helicopter) to guide them across.  The National Motor Lifeboat School trains its students at the mouth of the river because it provides some of “the harshest maritime weather conditions in the world”.  Suffice it to say, not only was I thrilled to be able to detect the Columbia River plume in our CTD profile, I was also supremely excited to finally sail across the bar.  While a tiny part of me had hoped for a slightly more arduous crossing (to live up to all the stories you know), I am happy to report that we had glorious, calm, sunny conditions, which allowed us all to thoroughly enjoy the view from the fly bridge.

Cape Disappointment Lighthouse at the Columbia River Bar.
Cape Disappointment Lighthouse at the Columbia River Bar.

Finally, we arrived in Astoria, loaded all our gear into the ship’s RHIB (Ridged Hulled Inflatable Boat), lowered it into the river, descended the rope ladder, got settled, and motored into port. We waved goodbye to the R/V Oceanus, and hope to conduct another STEM cruise aboard her again soon.

Now if the ground would stop rolling, that would be just swell.

Last but not least, here are the videos we promised you in Oceanus Day Two – the first video shows the humpback lunge feeding behavior, while the second shows tail slapping. Follow our youtube channel for more cool videos!