Collaboration – it’s where it’s at.

By Dominique Kone, Masters Student in Marine Resource Management

As I finish my first year of graduate school, I’ve been reflecting on what has helped me develop as a young scientist over the past year. Some of these lessons are somewhat expected: making time for myself outside of academia, reading the literature, and effectively managing my time. Yet, I’ve also learned that working with my peers, other scientists, and experts outside my scientific field can be extremely rewarding.

For my thesis, I will be looking at the potential to reintroduce sea otters to the Oregon coast by identifying suitable habitat and investigating their potential ecological impacts. During this first year, I’ve spent much time getting to know various stakeholder groups, their experiences with this issue, and any advice they may have to inform my work. Through these interactions, I’ve benefitted in ways that would not have been possible if I tried tackling this project on my own.

Source: Seapoint Center for Collaborative Leadership.

When I first started my graduate studies, I was eager to jump head first into my research. However, as someone who had never lived in Oregon before, I didn’t yet have a full grasp of the complexities and context behind my project and was completely unfamiliar with the history of sea otters in Oregon. By engaging with managers, scientists, and advocates, I quickly realized that there was a wealth of knowledge that wasn’t covered in the literature. Information from people who were involved in the initial reintroduction; theories behind the cause of the first failed reintroduction; and most importantly, the various political, social, and culture implications of a potential reintroduction. This information was crucial in developing and honing my research questions, which I would have missed if I had solely relied on the literature.

As my first year in graduate school progressed, I also quickly realized that most people familiar with this issue also had strong opinions and views about how I should conduct my study, whether and how managers should bring sea otters back, and if such an effort will succeed. This input was incredibly helpful in getting to know the issue, and also fostered my development as a scientist as I had to quickly improve my listening and critically-thinking skills to consider my research from different perspectives. One of the benefits of collaboration – particularly with experts outside the marine ecology or sea otter community – is that everyone looks at an issue in a different way. Through my graduate program, I’ve worked with students and faculty in the earth, oceanic, and atmospheric sciences, whom have challenged me to consider other sources of data, other analyses, or different ways of placing my research within various contexts.

Most graduate students when they first start graduate school. Source: Know Your Meme.

One of the major advantages of being a graduate student is that most researchers – including professors, faculty, managers, and fellow graduate students – are more than happy to analyze and discuss my research approach. I’ve obtained advice on statistical analyses, availability and access to data, as well as contacts to other experts. As a graduate student, it’s important for me to consult with more-experienced researchers who can not only explain complex theories or concepts, but who can also validate the appropriateness of my research design and methods. Collaborating with senior researchers is a great way to become established and recognized within the scientific community. Because of this project, I’ve started to become adopted into the marine mammal and sea otter research communities, which is obviously beneficial for my thesis work, but also allows me to start building strong relationships for a career in marine conservation.

Source: Oregon State University.

Looking ahead to my second year of graduate school, I’m eager to make a big push toward completing my thesis, writing manuscripts for journal submission, and communicating my research to various audiences. Throughout this process, it’s still important for me to continue to reach out and collaborate with others within and outside my field as they may help me reach my personal goals. In my opinion, this is exactly what graduate students should be doing. While graduate students may have the ability and some experience to work independently, we are still students, and we are here to learn from and make lasting connections with other researchers and fellow graduate students through these collaborations.

If there’s any advice I would give to an incoming graduate student, it’s this: Collaborate, and collaborate often. Don’t be afraid to work with others because you never know whether you’ll come away with a new perspective, learn something new, come across new research or professional opportunities, or even help others with their research.

Oregon sea otter reintroduction: opinions, perspectives, and theories

By Dominique Kone, Masters Student in Marine Resource Management

Species reintroductions can be hotly contested issues because they can negatively impact other species, ecosystems, and society, as well as failing, altogether. The uncertainty of their outcomes forces stakeholder groups to form their own opinions on whether it’s a good idea to proceed with a reintroduction. When you have several groups with conflicting values and views, managers need to focus on the information most important for them to make a well-informed decision on whether to pursue a reintroduction.

As researchers, we can play an important role by carefully considering and addressing these views through our research, if the appropriate data is available. Despite being in the early days of our study on the potential sea otter reintroduction to Oregon, we have already heard several perspectives regarding its potential success, the type of research we should do, and if sea otters should be brought back to Oregon. Here, I present some of the most interesting and relevant opinions, perspectives, and theories I’ve heard regarding this reintroduction idea.

Source: Suzi Eszterhas

The first reintroduction failed because of X, Y, and Z.

From 1970-1971, managers translocated 93 sea otters to Oregon in a reintroduction effort (Jameson et al. 1982). However, in a matter of 5-6 years, all sea otters disappeared, and the effort was considered a failure. Researchers have theorized that sea otters left Oregon due to a lack of suitable habitat and prey, or to return home to sites from which they were captured. Others have reasoned that managers should have introduced southern sea otters instead of northern sea otters, suggesting one subspecies’ genetic pre-disposition may improve their chance for survival.

Knowing the reasons for this failure may help managers avoid these causes in a future reintroduction attempt and increase its chance of success. We, as scientists, can also gain insight from knowing these causes because this may help us better tailor our research to potentially investigate whether those causes still pose a threat to sea otters during a second attempt. Unfortunately, we lack concrete evidence on what exactly caused this failure, but we can still work to test some these theories.

Source: Mike Baird.

An otter is an otter, no matter where you put it.

There is evidence that northern and southern sea otters are genetically distinct, to a certain degree (Valentine et al. 2008, Larson et al. 2012), and hypotheses have been put forward that the two subspecies may be behaviorally- and ecologically-distinct, too. Studies have shown that northern and southern sea otters have different sized and shaped skulls and teeth, which researchers hypothesize may be a specialized foraging adaptation for consuming different prey species (Campbell & Santana 2017, Timm-Davis et al. 2015). This view suggests that each subspecies has developed unique traits to adapt to the environmental conditions specific to their current ranges. Therefore, when considering which subspecies to bring to Oregon, managers should reintroduce the subspecies with traits better-suited to cope with the types of habitat, prey assemblages, and oceanographic conditions specific to Oregon.

However, other scientists hold the opposite view, and argue that “an otter is an otter” no matter where you put it. This perspective suggests that both subspecies have an equal chance at surviving in any type of suitable habitat because all otters behave in similar ways. Therefore, ecologically, it may not matter which subspecies managers bring to Oregon.

Source: Trover

Oregon doesn’t have enough sea otter habitat.

Kelp is considered important sea otter habitat. In areas with high sea otter densities, such as central and southern California, kelp forests are persistent throughout the year. However, in Oregon, our kelp primarily consists of bull kelp – a slightly more fragile species compared to the durable giant kelp in California. In winter, this bull kelp gets dislodged during intense storms, resulting in seasonal changes in kelp availability. Managers worry that this seasonality could reduce the amount of suitable habitat, to the point where Oregon may not be able to support sea otters.

Yet, we know sea otters used to exist here; therefore, we can assume there must have been some suitable habitat that may persist today. Furthermore, sea otters use a range of habitats, including estuaries, bays, and reefs (Laidre et al. 2009, Lafferty & Tinker 2014, Kvitek et al. 1988). Therefore, even during times when kelp is less abundant, sea otters could use these other forms of habitat along the Oregon coast. Luckily, we have the spatial tools and data to assess how much, where, and when we have suitable habitat, and I will specifically address this in my thesis.

They’ll eat everything!

Sea otters are famous for their voracious appetites for benthic invertebrates, some of which are of commercial and recreational importance to nearshore fisheries. In some cases, sea otters have significantly reduced prey densities, such as sea urchins and Dungeness crab (Garshelis & Garshelis 1984, Estes & Palmisano 1974). However, without a formal analysis, it’s difficult to know if sea otters will have similar impacts on Oregon’s nearshore species, as well as at spatial scale these impacts will occur and whether our fisheries will be affected. We can predict where sea otters are likely to occur based on the presence of suitable habitat, but foraging impacts could be more localized or widespread across sea otter’s entire potential range. To better anticipate these impacts, managers will need an understanding of how much sea otters eat, where foraging could occur based on the availability of prey, and where sea otters and fisheries are likely to interact. I will also address this concern in my thesis.

Source: Suzi Eszterhas

To reintroduce or not to reintroduce? That is the question.

I have found that many scientists and managers have strong opinions on whether it’s appropriate to bring sea otters back to Oregon. Those who argue against a reintroduction often highlight many of the theories already mentioned here – lack of habitat, potential impacts to fisheries, and genetics. While other opponents provided more logistical and practical justifications, such as confounding politics, as well as difficulties in getting public support and regulatory permission to move a federally-listed species.

In contrast, proponents of this idea argue that a reintroduction could augment the recovery of the species by providing additional habitat for the species to rebound to pre-exploitation levels, as well as allowing for increased gene flow between southern and northern sea otter populations. Other proponents have brought up potential benefits to humans, such restoring ecosystem services, providing an economic boost through tourism, or preserving tribal and cultural connections. Such benefits may be worth attempting another reintroduction effort.

As you can see, there are several opinions and perspectives related to a potential sea otter reintroduction to Oregon. While it’s important to consider all opinions, managers still need facts to make key decisions. Scientists can play an important role in providing this information, so managers can make a well-informed decision. Oregon managers have not yet decided whether to proceed with a sea otter reintroduction, but our lab is working to provide them with reliable and accurate science, so they may form their own opinions and arrive at their own decision.

References:

Estes, J. A. and J. F. Palmisano. 1974. Sea otters: the role in structuring nearshore communities. Science. 185: 1058-1060.

Garshelis, D. L. and J. A. Garshelis. 1984. Movements and management of sea otters in Alaska. The Journal of Wildlife Management. 48: 665-678.

Jameson, R. J, Kenyon, K. W., Johnson, A. M., and H. M. Wight. 1982. History and status of translocated sea otter populations in North America. Wildlife Society Bulletin. 10: 100-107.

Lafferty, K. D., and M. T. Tinker. 2014. Sea otters are recolonizing southern California in fits and starts. Ecosphere. 5(5).

Laidre, K. L., Jameson, R. J., Gurarie, E., Jeffries, S. J., and H. Allen. 2009. Spatial habitat use patterns of sea otters in coastal Washington. Journal of Mammalogy. 90(4): 906-917.

Kvitek, R. G. ,Fukayama, A. K., Anderson, B. S., and B. K. Grimm. 1988. Sea otter foraging on deep-burrowing bivalves in a California coastal lagoon. Marine Biology. 98: 157-167.

Larson, S., Jameson, R., Etnier, M., Jones, T., and R. Hall. 2012. Genetic diversity and population parameters of sea otters, Enhydra lutris, before fur trade extirpation from 1741-1911. PLoS ONE. 7(3).

Timm-Davis, L. L, DeWitt, T. J., and C. D. Marshall. 2015. Divergent skull morphology supports two trophic specializations in otters (Lutrinae). PLoS ONE. 10(12).

Valentine et al. 2008. Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conservation Genetics. 9:933-938.

 

 

The Recipe for a “Perfect” Marine Mammal and Seabird Cruise

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Science—and fieldwork in particular—is known for its failures. There are websites, blogs, and Twitter pages dedicated to them. This is why, when things go according to plan, I rejoice. When they go even better than expected, I practically tear up from amazement. There is no perfect recipe for a great marine mammal and seabird research cruise, but I would suggest that one would look like this:

 A Great Marine Mammal and Seabird Research Cruise Recipe:

  • A heavy pour of fantastic weather
    • Light on the wind and seas
    • Light on the glare
  • Equal parts amazing crew and good communication
  • A splash of positivity
  • A dash of luck
  • A pinch of delicious food
  • Heaps of marine mammal and seabird sightings
  • Heat to approximately 55-80 degrees F and transit for 10 days along transects at 10-12 knots
The end of another beautiful day at sea on the R/V Shimada. Image source: Alexa K.

The Northern California Current Ecosystem (NCCE) is a highly productive area that is home to a wide variety of cetacean species. Many cetaceans are indicator species of ecosystem health as they consume large quantities of prey from different levels in trophic webs and inhabit diverse areas—from deep-diving beaked whales to gray whales traveling thousands of miles along the eastern north Pacific Ocean. Because cetacean surveys are a predominant survey method in large bodies of water, they can be extremely costly. One alternative to dedicated cetacean surveys is using other research vessels as research platforms and effort becomes transect-based and opportunistic—with less flexibility to deviate from predetermined transects. This decreases expenses, creates collaborative research opportunities, and reduces interference in animal behavior as they are never pursued. Observing animals from large, motorized, research vessels (>100ft) at a steady, significant speed (>10kts/hour), provides a baseline for future, joint research efforts. The NCCE is regularly surveyed by government agencies and institutions on transects that have been repeated nearly every season for decades. This historical data provides critical context for environmental and oceanographic dynamics that impact large ecosystems with commercial and recreational implications.

My research cruise took place aboard the 208.5-foot R/V Bell M. Shimada in the first two weeks of May. The cruise was designated for monitoring the NCCE with the additional position of a marine mammal observer. The established guidelines did not allow for deviation from the predetermined transects. Therefore, mammals were surveyed along preset transects. The ship left port in San Francisco, CA and traveled as far north as Cape Meares, OR. The transects ranged from one nautical mile from shore and two hundred miles offshore. Observations occurred during “on effort” which was defined as when the ship was in transit and moving at a speed above 8 knots per hour dependent upon sea state and visibility. All observations took place on the flybridge during conducive weather conditions and in the bridge (one deck below the flybridge) when excessive precipitation was present. The starboard forward quarter: zero to ninety degrees was surveyed—based on the ship’s direction (with the bow at zero degrees). Both naked eye and 7×50 binoculars were used with at least 30 percent of time binoculars in use. To decrease observer fatigue, which could result in fewer detected sightings, the observer (me) rotated on a 40 minutes “on effort”, 20 minutes “off effort” cycle during long transits (>90 minutes).

Alexa on-effort using binoculars to estimate the distance and bearing of a marine mammal sighted off the starboard bow. Image source: Alexa K.

Data was collected using modifications to the SEEbird Wincruz computer program on a ruggedized laptop and a GPS unit was attached. At the beginning of each day and upon changes in conditions, the ship’s heading, weather conditions, visibility, cloud cover, swell height, swell direction, and Beaufort sea state (BSS) were recorded. Once the BSS or visibility was worse than a “5” (1 is “perfect” and 5 is “very poor”) observations ceased until there was improvement in weather. When a marine mammal was sighted the latitude and longitude were recorded with the exact time stamp. Then, I noted how the animal was sighted—either with binoculars or naked eye—and what action was originally noticed—blow, splash, bird, etc. The bearing and distance were noted using binoculars. The animal was given three generalized behavior categories: traveling, feeding, or milling. A sighting was defined as any marine mammal or group of animals. Therefore, a single sighting would have the species and the best, high, and low estimates for group size.

By my definitions, I had the research cruise of my dreams. There were moments when I imagined people joining this trip as a vacation. I *almost* felt guilty. Then, I remember that after watching water for almost 14 hours (thanks to the amazing weather conditions), I worked on data and reports and class work until midnight. That’s the part that no one talks about: the data. Fieldwork is about collecting data. It’s both what I live for and what makes me nervous. The amount of time, effort, and money that is poured into fieldwork is enormous. The acquisition of the data is not as simple as it seems. When I briefly described my position on this research cruise to friends, they interpret it to be something akin to whale-watching. To some extent, this is true. But largely, it’s grueling hours that leave you fatigued. The differences between fieldwork and what I’ll refer to as “everything else” AKA data analysis, proposal writing, manuscript writing, literature reviewing, lab work, and classwork, are the unbroken smile, the vaguely tanned skin, the hours of laughter, the sea spray, and the magical moments that reassure me that I’ve chosen the correct career path.

Alexa photographing a gray whale at sunset near Newport, OR. Image source: Alexa K.

This cruise was the second leg of the Northern California Current Ecosystem (NCCE) survey, I was the sole Marine Mammal and Seabird Observer—a coveted position. Every morning, I would wake up at 0530hrs, grab some breakfast, and climb to the highest deck: the fly-bridge. Akin to being on the top of the world, the fly-bridge has the best views for the widest span. From 0600hrs to 2000hrs I sat, stood, or danced in a one-meter by one-meter corner of the fly-bridge and surveyed. This visual is why people think I’m whale watching. In reality, I am constantly busy. Nonetheless, I had weather and seas that scientists dream about—and for 10 days! To contrast my luck, you can read Florence’s blog about her cruise. On these same transects, in February, Florence experienced 20-foot seas with heavy rain with very few marine mammal sightings—and of those, the only cetaceans she observed were gray whales close to shore. That starkly contrasts my 10 cetacean species with upwards of 45 sightings and my 20-minute hammock power naps on the fly-bridge under the warm sun.

Pacific white-sided dolphins traveling nearby. Image source: Alexa K.

Marine mammal sightings from this cruise included 10 cetacean species: Pacific white-sided dolphin, Dall’s porpoise, unidentified beaked whale, Cuvier’s beaked whale, gray whale, Minke whale, fin whale, Northern right whale dolphin, blue whale, humpback whale, and transient killer whale and one pinniped species: northern fur seal. What better way to illustrate these sightings than with a map? We are a geospatial lab after all.

Cetacean Sightings on the NCCE Cruise in May 2018. Image source: Alexa K.

This map is the result of data collection. However, it does not capture everything that was observed: sea state, weather, ocean conditions, bathymetry, nutrient levels, etc. There are many variables that can be added to maps–like this one (thanks to my GIS classes I can start adding layers!)–that can provide a better understanding of the ecosystem, predator-prey dynamics, animal behavior, and population health.

The catch from a bottom trawl at a station with some fish and a lot of pyrosomes (pink tube-like creatures). Image source: Alexa K.

Being a Ph.D. student can be physically and mentally demanding. So, when I was offered the opportunity to hone my data collection skills, I leapt for it. I’m happiest in the field: the wind in my face, the sunshine on my back, surrounded by cetaceans, and filled with the knowledge that I’m following my passion—and that this data is contributing to the greater scientific community.

Humpback whale photographed traveling southbound. Image source: Alexa K.

Assessing suitable sea otter habitat along Oregon’s coast

By Dominique Kone, Masters Student in Marine Resource Management

When considering a species reintroduction into an area, it is important to assess the suitability of the area’s habitat before such efforts begin. By doing this assessment at the outset, managers and conservationists can gain a better understanding of the capacity of the area to support a viable population overtime, and ultimately the success of the reintroduction. However, to do a habitat assessment, researchers must first have a base understanding of the species’ ecological characteristics, behavior, and the physical habitat features necessary for the species’ survival. For my thesis, I plan to conduct a similar assessment to identify suitable sea otter habitat to inform a potential sea otter reintroduction to the Oregon coast.

Source: The Tribune.

To start my assessment, I conducted a literature review of studies that observed and recorded the various types of habitats where sea otters currently exist. In my research, I learned that sea otters use in a range of environments, each with a unique set of habitat characteristics. With so many features to sort through, I have focused on specific habitat features that are consistent across most of the current range of sea otters – from Alaska to California – and are important for at least some aspects of sea otters’ everyday life or behavior, specifically foraging. Focusing my analysis on foraging habitat makes sense as sea otters require around 30% of their body weight in food every day (Costa 1978, Reidman & Estes 1990). Meaning sea otters spend most of their day searching for food.

Here, I present four habitat features I will incorporate into my analysis and explain why these features are important for sea otter foraging behavior and survival.

Habitat Features:

  1. Kelp: Sea otters are famously known for the benefits they provide to kelp forests. In the classic three-trophic-level model, sea otters allow for the growth of kelp by keeping sea urchins – consumers of kelp – in check (Estes & Palmisano 1974). Additionally, sea otters and kelp have a mutually-beneficial relationship. Sea otters will often wrap themselves amongst the top of kelp stocks while feeding, resting, or grooming to prevent being carried away by surface currents. Meanwhile, it’s thought that kelp provide a refuge for sea otters seeking to avoid predators, such as sharks, as well as their prey.
Source: The Telegraph.
  1. Distance from Kelp: The use of kelp, by sea otters, is relatively straight-forward. Yet, kelp can still have an influence on sea otter behavior even when not used directly. A 2014 study found that sea otters along the southern California coast were almost 10 times more likely to be located within kelp habitat than outside, while outside kelp beds sea otter numbers declined with distance from the edge of kelp canopies. Sea otters will often forage outside or next to kelp canopies when prey’s available, and even sometimes to socialize in age- or sex-specific rafts (Lafferty & Tinker 2014). These findings indicate that sea otters can and do regularly disperse away from kelp habitat, but because they’re so dependent on kelp, they don’t stray very far.

 

  1. Seafloor Substrate: Sea otters forage over a variety of sediment substrates, including rocks, gravel, seagrass, and even sometimes sand. For example, sea otters hunt sea urchins over rocky substrates, while in other areas they may hunt for crabs in seagrass beds (Estes & Palmisano 1974, Hughes et al. 2014). The type of substrate sea otters forage in typically depends on the substrate needs of their target prey species. Despite some variability across their range, sea otters predominantly forage in rocky substrate environments. Rocky substrate is also necessary for kelp, whose holdfasts need to attach to hard, stable surfaces (Carney et al. 2005).
Source: Save our Seas Foundation.
  1. Depth: Seafloor depth plays a pivotal role in sea otter foraging behavior and therefore acts as a natural boundary that determines how far away from shore sea otters distribute. Many of the prey species sea otters eat – including sea urchins, crabs, and snails – live on the seafloor of the inner continental shelf, requiring sea otters to dive when foraging. Interestingly, sea otters exhibit a non-linear relationship with depth, where most individuals forage at intermediate depths as opposed to extremely shallow or deep waters. One study found the average foraging depth to be around 15 meters (Lafferty & Tinker 2014). This behavior results in a hump-shaped distribution of diving patterns as illustrated in Figure 1 below.
Figure 1. Average probability of occurrence as a function of depth for female (A) and male (B) sea otters as predicted by a synoptic model of space-use (Tinker et al. 2017).

Of course, local conditions and available habitat are always a factor. For example, a study found that sea otters along the coast of Washington foraged further from shore and in slightly shallower environments than sea otters in California (Laidre et al. 2009), indicating that local topography is important in determining distribution. Additionally, diving requires energy and limits how deep sea otters are able to forage for prey. Therefore, diving patterns are not only a function of local topography, but also availability of prey and foraging efficiency in exploiting that prey. Regardless, most sea otter populations follow this hump-shaped diving pattern.

Source: Doretta Smith.

These features are not a complete list of all habitat characteristics that support viable sea otter populations, but seem to be the most consistent throughout their entire range, as well as present in Oregon’s nearshore environment – making them ideal features to include in my analysis. Furthermore, other studies that have predicted suitable sea otter habitat (Tinker et al. 2017), estimated carrying capacity as a product of suitable habitat identification (Laidre et al. 2002), or simply observed sea otter foraging behavior (Estes & Palmisano 1974), have echoed the importance of these four habitat features to sea otter survival.

As with most reintroduction efforts, the process of identifying suitable habitat for the species of interest can be complicated. No two ecosystems or habitats are exactly alike and each comprise their own unique set of physical features and are impacted by environmental processes to varying degrees. The Oregon coast consists of a unique combination of oceanographic conditions and drivers that likely impact the degree and amount of available habitat to sea otters. Despite this, by focusing on the habitat features that are consistently preferred by sea otters across most of their range, I will be able to identify habitat most suitable for sea otter survival in Oregon. The questions of where this habitat is and how much is available are what I’ll determine soon, so stay tuned.

References:

Carney, L. T., Robert Waaland, J., Kilinger, T., and K. Ewing. 2005. Restoration of the bull kelp Nereocystis luetkeana in nearshore rocky habitats. Marine Ecology Progress Series. 302: 49-61.

Costas, D. P. 1978. The ecological energetics, waters, and electrolyte balance of the California sea otter (Enhydra lutris). Ph.D. dissertation, University of California, Santa Cruz.

Estes, J. A. and J. F. Palmisano. 1974. Sea otters: their role in structuring nearshore communities. Science. 185(4156): 1058-1060.

Hughes et al. 2014. Recovery of a top predator mediate negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences. 110(38): 15313-15318.

Lafferty, K. D. and M. T. Tinker. 2014. Sea otters are recolonizing southern California in fits and starts. Ecosphere. 5(5): 1-11.

Laidre et al. 2002. Estimates of carrying capacity for sea otters in Washington state. Wildlife Society Bulletin. 30(4): 1172-1181.

Laidre et al. 2009. Spatial habitat use patterns of sea otters in coastal Washington. Journal of Mammalogy. 90(4): 906-917.

Tinker et al. 2017. Southern sea otter range expansion and habitat use in the Santa Barbara Channel, California: U.S. Geological Survey Open-File Report 2017-1001 (OCS Study BOEM 2017-022), 76 p., http://doi.org/10.3133/ofr20171001.

Reidman, M. L. and J. A. Estes. 1990. The sea otter (Enhydra lutris): behavior, ecology, and natural history. United States Department of the Interior, Fish and Wildlife Service, Biological Report. 90: 1-126.

 

 

Sea Otter Management in the U.S.

By Dominique Kone, Masters Student in Marine Resource Management

Since the first official legal protections in 1911, the U.S. has made great strides in recovering sea otter populations. While much of this progress is due to increased emphasis on understanding sea otter behavior, biology, and ecology, there are also several policies that have been just as instrumental in making sea otter conservation efforts successful. Here, I provide a brief overview of the current legal and regulatory policies used to manage sea otters in the U.S. and explain why having a base understanding of these tools can help our lab as we look into the potential reintroduction of sea otters to the Oregon coast.

Sea otter with pup, Prince William Sound, Alaska. Source: Patrick J. Endres

When we talk about sea otter management in the U.S., the two most obvious laws that come to mind are the Marine Mammal Protection Act (MMPA) and the Endangered Species Act (ESA). In short, the MMPA seeks to prevent the take – including kill, harass, capture, or disturb – or importation of marine mammals and marine mammal products[1]. While the ESA seeks to protect and recover imperiled species – not just marine mammals – and the ecosystems which they depend upon[2]. Both laws are similar in the sense that their primary objectives are to protect and recover at-risk species. However, marine mammals will always be protected under the MMPA, but will only be protected under the ESA if the species is considered threatened or endangered.

On the federal level, the U.S. Fish and Wildlife Service (the Service) is primarily responsible for managing sea otter populations. In the U.S., we manage sea otter populations as five distinct stocks, which differ in their population size and geographic distribution – located in California, Washington, and Alaska state waters (Fig. 1). Because sea otters are divided into these single stocks, management decisions – such as recovery targets or reintroductions – are made on a stock-by-stock basis and are dependent on the stock’s population status. Currently, two of these stocks are federally-listed as threatened under the ESA. Therefore, these two stocks are granted protection under both the ESA and MMPA, while the remaining three stocks are only protected by the MMPA (at the federal level; state management may also apply).

Figure 1. Distribution (approximations of population centers) of sea otter stocks in the U.S. (SW = Southwest Alaskan; SC = Southcentral Alaskan; SE = Southeast Alaskan; WA = Washington, SCA = Southern/Californian)

While the MMPA and ESA are important federal laws, I would be remiss if I didn’t mention the important role that state laws and state agencies have in managing sea otters. According to the MMPA and ESA, if a state develops and maintains a conservation or recovery program with protections consistent with the standards and policies of the MMPA and/or ESA, then the Service may transfer management authority over to the state1,2. However, typically, the Service has opted to manage any stocks listed under the ESA, while states manage all other stocks not listed under the ESA.

Sea otter management in the states of Washington and California is a clear example of this dichotomy. The Washington sea otter stock is not listed under the ESA, and is therefore, managed by the Washington Department of Fish and Wildlife (WDFW), which developed the stock’s recovery plan[3]. In contrast, sea otters along the California coast are listed as threatened under the ESA, and the Service primarily manages the stock’s recovery[4].

Interestingly, sea otter management in Alaska is an exception to this rule. The Southeast and Southcentral sea otter stocks are not listed under the ESA, yet are still managed by the Service. However, the state recognizes sea otters as a species of greatest conservation need in the state’s Wildlife Action Plan, which acts as a recommendation framework for the management and protection of important species and ecosystems[5]. Therefore, even though the state is not the primary management authority for sea otters by law, they still play a role in protecting Alaskan sea otter populations through this action plan.

Table 1. Federal and state listing status of all sea otter stocks within U.S. coastal waters.

States have also implemented their own laws for protecting at-risk species. For instance, while the Washington sea otter stock is not listed under the ESA, it is listed as endangered under Washington state law4. This example raises an important example demonstrating that even if a stock isn’t federally-listed, it may still be protected on the state level, and is always protected under the MMPA. Therefore, if the federal and state listing status do not match, which is the case for most sea otter stocks in the U.S. (Table 1.), the stock still receives management protection at some level.

So why does this matter?

Each of the previously mentioned laws are prohibitive in nature, where the objectives are to prevent and discourage activities which may harm the stock of interest. Yet, agencies may grant exceptions – in the form of permits – for activities, such as scientific research, translocations, commercial/recreational fisheries operations, etc. The permit approval process will oftentimes depend on: (1) the severity or likelihood of that action to harm the species, (2) the species’ federal and state listing status, and (3) the unique approval procedures enforced by the agency. Activities that are perceived to have a high likelihood of harming a species, or involve a species that’s listed under the ESA, will likely require a longer and more arduous approval process.

A sea otter release in Monterey Bay, California. Source: Monterey Bay Aquarium Newsroom.

Understanding these various approval processes is vitally important for our work on the potential reintroduction of sea otters to Oregon because such an effort will no doubt require many permits and a thoughtful permit approval process. Each agency may have their own set of permits, administrative procedures, and approval processes. Therefore, it behooves us to have a clear understanding of these various processes relative to the state, agency, or stock involved. If, hypothetically, a stock is determined as a suitable candidate for reintroduction into Oregon waters, having this understanding will allow us to determine where our research can best inform the effort, what types of information and data are needed to inform the process, and to which agency or stakeholders we must communicate our research.

 

References:

[1] Marine Mammal Protection Act of 1972

[2] Endangered Species Act of 1973

[3] State of Washington. 2004. Sea Otter Recovery Plan. Washington Department of Fish and Wildlife: Wildlife Program

[4] U.S. Fish & Wildlife Service. 2003. Final Revised Recovery Plan for the Southern Sea Otter (Enydra lutris nereis).

[5] Alaska Department of Fish and Game. 2015. Alaska wildlife action plan. Juneau.

 

The Land of Maps and Charts: Geospatial Ecology

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I love maps. I love charts. As a random bit of trivia, there is a difference between a map and a chart. A map is a visual representation of land that may include details like topology, whereas a chart refers to nautical information such as water depth, shoreline, tides, and obstructions.

Map of San Diego, CA, USA. (Source: San Diego Metropolitan Transit System)
Chart of San Diego, CA, USA. (Source: NOAA)

I have an intense affinity for visually displaying information. As a child, my dad traveled constantly, from Barrow, Alaska to Istanbul, Turkey. Immediately upon his return, I would grab our standing globe from the dining room and our stack of atlases from the coffee table. I would sit at the kitchen table, enthralled at the stories of his travels. Yet, a story was only great when I could picture it for myself. (I should remind you, this was the early 1990s, GoogleMaps wasn’t a thing.) Our kitchen table transformed into a scene from Master and Commander—except, instead of nautical charts and compasses, we had an atlas the size of an overgrown toddler and salt and pepper shakers to pinpoint locations. I now had the world at my fingertips. My dad would show me the paths he took from our home to his various destinations and tell me about the topography, the demographics, the population, the terrain type—all attribute features that could be included in common-day geographic information systems (GIS).

Uncle Brian showing Alexa where they were on a map of Maui, Hawaii, USA. (Photo: Susan K. circa 1995)

As I got older, the kitchen table slowly began to resemble what I imagine the set from Master and Commander actually looked like; nautical charts, tide tables, and wind predictions were piled high and the salt and pepper shakers were replaced with pencil marks indicating potential routes for us to travel via sailboat. The two of us were in our element. Surrounded by visual and graphical representations of geographic and spatial information: maps. To put my map-attraction this in even more context, this is a scientist who grew up playing “Take-Off”, a board game that was “designed to teach geography” and involved flying your fleet of planes across a Mercator projection-style mapboard. Now, it’s no wonder that I’m a graduate student in a lab that focuses on the geospatial aspects of ecology.

A precocious 3-year-old Alexa, sitting with the airplane pilot asking him a long list of travel-related questions (and taking his captain’s hat). Photo: Susan K.

So why and how did geospatial ecology became a field—and a predominant one at that? It wasn’t that one day a lightbulb went off and a statistician decided to draw out the results. It was a progression, built upon for thousands of years. There are maps dating back to 2300 B.C. on Babylonian clay tablets (The British Museum), and yet, some of the maps we make today require highly sophisticated technology. Geospatial analysis is dynamic. It’s evolving. Today I’m using ArcGIS software to interpolate mass amounts of publicly-available sea surface temperature satellite data from 1981-2015, which I will overlay with a layer of bottlenose dolphin sightings during the same time period for comparison. Tomorrow, there might be a new version of software that allows me to animate these data. Heck, it might already exist and I’m not aware of it. This growth is the beauty of this field. Geospatial ecology is made for us cartophiles (map-lovers) who study the interdependency of biological systems where location and distance between things matters.

Alexa’s grandmother showing Alexa (a very young cartographer) how to color in the lines. Source: Susan K. circa 1994

In a broader context, geospatial ecology communicates our science to all of you. If I posted a bunch of statistical outputs in text or even table form, your eyes might glaze over…and so might mine. But, if I displayed that same underlying data and results on a beautiful map with color-coded symbology, a legend, a compass rose, and a scale bar, you might have this great “ah-ha!” moment. That is my goal. That is what geospatial ecology is to me. It’s a way to SHOW my science, rather than TELL it.

Would you like to see this over and over again…?

A VERY small glimpse into the enormous amount of data that went into this map. This screenshot gave me one point of temperature data for a single location for a single day…Source: Alexa K.

Or see this once…?

Map made in ArcGIS of Coastal common bottlenose dolphin sightings between 1981-1989 with a layer of average sea surface temperatures interpolated across those same years. A picture really is worth a thousand words…or at least a thousand data points…Source: Alexa K.

For many, maps are visually easy to interpret, allowing quick message communication. Yet, there are many different learning styles. From my personal story, I think it’s relatively obvious that I’m, at least partially, a visual learner. When I was in primary school, I would read the directions thoroughly, but only truly absorb the material once the teacher showed me an example. Set up an experiment? Sure, I’ll read the lab report, but I’m going to refer to the diagrams of the set-up constantly. To this day, I always ask for an example. Teach me a new game? Let’s play the first round and then I’ll pick it up. It’s how I learned to sail. My dad described every part of the sailboat in detail and all I heard was words. Then, my dad showed me how to sail, and it came naturally. It’s only as an adult that I know what “that blue line thingy” is called. Geospatial ecology is how I SEE my research. It makes sense to me. And, hopefully, it makes sense to some of you!

Alexa’s dad teaching her how to sail. (Source: Susan K. circa 2000)
Alexa’s first solo sailboat race in Coronado, San Diego, CA. Notice: Alexa’s dad pushing the bow off the dock and the look on Alexa’s face. (Source: Susan K. circa 2000)
Alexa mapping data using ArcGIS in the Oregon State University Library. (Source: Alexa K circa a few minutes prior to posting).

I strongly believe a meaningful career allows you to highlight your passions and personal strengths. For me, that means photography, all things nautical, the great outdoors, wildlife conservation, and maps/charts.  If I converted that into an equation, I think this is a likely result:

Photography + Nautical + Outdoors + Wildlife Conservation + Maps/Charts = Geospatial Ecology of Marine Megafauna

Or, better yet:

📸 + ⚓ + 🏞 + 🐋 + 🗺 =  GEMM Lab

This lab was my solution all along. As part of my research on common bottlenose dolphins, I work on a small inflatable boat off the coast of California (nautical ✅, outdoors ✅), photograph their dorsal fin (photography ✅), and communicate my data using informative maps that will hopefully bring positive change to the marine environment (maps/charts ✅, wildlife conservation✅). Geospatial ecology allows me to participate in research that I deeply enjoy and hopefully, will make the world a little bit of a better place. Oh, and make maps.

Alexa in the field, putting all those years of sailing and chart-reading to use! (Source: Leila L.)

 

Living the Dream – life as a marine mammal observer

By Florence Sullivan, MSc.

Living the dream as a marine mammal observer onboard the R/V Bell Shimada Photo credit: Dave Jacobsen

I first learned that “Marine Mammal Observer” was a legitimate career field during the summer after my junior year at the University of Washington.  I had the good fortune to volunteer for the BASIS fisheries-oceanography survey onboard the R/V Oscar Dyson where I met two wonderful bird observers who taught me how to identify various pelagic bird species and clued me in to just how diverse the marine science job market can be. After the cruise, younger Florence went off with an expanded world view and a small dream that maybe someday she could go out to sea and survey for marine mammals on a regular basis (and get paid for it?!).  Eight years later, I am happy to report that I have just spent the last week as the marine mammal observer on the North California Current Survey on the Dyson’s sister ship, the R/V Bell M. Shimada.  While we may not have seen as many marine mammals as I would have liked, the experience has still been everything younger Florence hoped it would be.

Finally leaving port a few days behind schedule due to stormy weather! photo credit: Florence Sullivan

If you’ve ever wondered why the scientists in your life may refer to summer as “field work season”, it’s because attempting to do research outside in the winter is an exercise in frustration, troubleshooting, and flexibility. Case in point; this cruise was supposed to sail away from port on the 24th of February, but did not end up leaving until the 27th due to bad weather.  This weather delay meant that we had to cut some oceanographic stations we would like to have sampled, and even when we made it out of the harbor, the rough weather made it impossible to sample some of the stations we still had left on our map.  That being said, we still got a lot of good work done!

The original station map. The warm colors are the west coast of the US, the cold colors are the ocean, and the black dots are planned survey stations

The oceanographers were able to conduct CTD casts at most planned stations, as well as sample the water column with a vertical zooplankton net, a HAB net (for looking for the organisms that cause Harmful Algal Blooms),  and a Bongo Net (a net that specializes in getting horizontal samples of the water column).  When it wasn’t too windy, they were also able to sample with the Manta net (a net specialized for surface sampling – it looks like a manta ray’s mouth) and at certain near-shore stations they did manage to get some bottom beam trawls in to look at the benthic community of fishes and invertebrates.  All this was done while dodging multitudes of crab pots and storm fronts.  The NOAA corps officers who drive the boat, and the deck crew who handle all the equipment deployments and retrievals really did their utmost to make sure we were able to work.

Stormy seas make for difficult sampling conditions! photo credit: Florence Sullivan

For my part, I spent the hours between stations searching the wind-tossed waves for any sign of marine mammals. Over the course of the week, I saw a few Northern fur seals, half a dozen gray whales, and a couple of unidentified large cetaceans.  When you think about the productivity of the North Pacific Ecosystem this may not seem like very much.  But remember, it is late winter, and I do not have x-ray vision to see through the waves.  It is likely that I missed a number of animals simply because the swell was too large, and when we calculate our “detection probability” these weather factors will be taken into account. In addition, many of our local marine mammals are migrators who might be in warmer climates, or are off chasing different food sources at the moment.  In ecology, when you want to know how a population of animals is distributed across a land- or sea-scape, it is just as important to understand where the animals are NOT as where they ARE. So all of this “empty” water was very important to survey simply because it helps us refine our understanding of where animals don’t want to be.  When we know where animals AREN’T we can ask better questions about why they occur where they ARE.

Black Footed Albatross soars near the boat. Photo credit: Florence Sullivan

Notable species of the week aside from the marine mammals include Laysan and Black Footed Albatrosses, a host of Vellella vellella (sailor by the wind hydroid colonies) and the perennial favorite of oceanographers; the shrinking Styrofoam cup.  (See pictures)

We sent these styrofoam cups down to 1800 meters depth. The pressure at those depths causes all the air to escape from the styrofoam, and it shrinks! This is a favorite activity of oceanographers to demonstrate the effects on increased pressure!

These sorts of interdisciplinary cruises are quite fun and informative to participate in because we can build a better picture of the ecosystem as a whole when we use a multitude of methods to explore it.  This strength of cooperation makes me proud to add my little piece to the puzzle. As I move forward in life, whether I get to be the marine mammal observer, the oceanographer, or perhaps an educator, I will always be glad to contribute to collaborative research.

 

Coastal oceanography takes patience

Joe Haxel, Acoustician, Assistant Professor, CIMRS/OSU

Greetings GEMM Lab blog readers. My name is Joe Haxel and I’m a close collaborator with Leigh and other GEMM lab members on the gray whale ecology, physiology and noise project off the Oregon coast. Leigh invited me for a guest blog appearance to share some of the acoustics work we’ve been up to and as you’ve probably guessed by now, my specialty is in ocean acoustics. I’m a PI in NOAA’s Pacific Marine Environmental Laboratory’s Acoustics Program and OSU’s Cooperative Institute for Marine Resources Studies where I use underwater sound to study a variety of earth and ocean processes.

As a component of the gray whale noise project, during the field seasons of 2016 and 2017 we recorded some of the first measurements of ambient sound in the shallow coastal waters off Oregon between 7 and 20 meters depth. In the passive ocean acoustics world this is really shallow, and with that comes all kinds of instrument and logistical challenges, which is probably one of the main reasons there is little or no acoustic baseline information in this environment.

For instance, one of the significant challenges is rooted in the hydrodynamics surrounding mobile recording systems like the drifting hydrophone we used during the summer field season in 2016 (Fig 1). Decoupling motion of the surface buoy (e.g., caused by swell and waves) from the submerged hydrophone sensor is critical, and here’s why. Hydrophones convert pressure fluctuations at the sensor/ water interface to a calibrated voltage recorded by a logging system. Turbulence resulting from moving the sensor up and down in the water column with surface waves introduces non-acoustic pressure changes that severely contaminate the data for noise level measurements. Vertical and horizontal wave motions are constantly acting on the float, so we needed to engineer compliance between the surface float and the suspended hydrophone sensor to decouple these accelerations. To overcome this, we employed a couple of concepts in our drifting hydrophone design. 1) A 10 cm diameter by 3 m long spar buoy provided floatation for the system. Spar buoys are less affected by wave motion accelerations compared to most other types of surface floatation with larger horizontal profiles and drag. 2) A dynamic shock cord that could stretch up to double its resting length to accommodate vertical motion of the spar buoy; 3) a heave plate that significantly reduced any vertical motion of the hydrophone suspended below it. This was a very effective design, and although somewhat cumbersome in transport with the RHIB between deployment sites, the acoustic data we collected over 40 different drifts around Newport and Port Orford in 2016 was clean, high quality and devoid of system induced contamination.

Figure 1. The drifting hydrophone system used for 40 different drifts recording ambient noise levels in 7-20 m depths in the Newport and Port Orford, OR coastal areas.

 

 

 

 

 

 

 

 

 

 

 

 

Spatial information from the project’s first year acoustic recordings using the drifting hydrophone system helped us choose sites for the fixed hydrophone stations in 2017. Now that we had some basic information on the spatial variability of noise within the study areas we could focus on the temporal objectives of characterizing the range of acoustic conditions experienced by gray whales over the course of the entire foraging season at these sites in Oregon. In 2017 we deployed “lander” style instrument frames, each equipped with a single, omni-directional hydrophone custom built by Haru Matsumoto at our NOAA/OSU Acoustics lab (Fig. 2). The four hydrophone stations were positioned near each of the ports (Yaquina Bay and Port Orford) and in partnership with the Oregon Department of Fish and Wildlife Marine Reserves program in the Otter Rock Marine Reserve and the Redfish Rocks Marine Reserve. The hydrophones were programmed on a 20% duty cycle, recording 12 minutes of every hour at 32 kHz sample rate, providing spectral information in the frequency band from 10 Hz up to a 13 kHz.

Figure 2. The hydrophone (black cylinder) on its lander frame ready for deployment.

Here’s where the story gets interesting. In my experience so far putting out gear off the Oregon coast, anything that has a surface expression and is left out for more than a couple of weeks is going to have issues. Due to funding constraints, I had to challenge that theory this year and deploy 2 of the units with a surface buoy. This is not typically what we do with our equipment since it usually stays out for up to 2 years at a time, is sensitive, and expensive. The 2 frames with a surface float were going to be deployed in Marine Reserves far enough from the traffic lanes of the ports and in areas with significantly less traffic and presumably no fishing pressure.  The surface buoy consisted of an 18 inch diameter hard plastic float connected to an anchor that was offset from the instrument frame by a 150 foot weighted groundline. The gear was deployed off Newport in June and Port Orford in July. What could go wrong?

After monthly buoy checks by the project team, including GPS positions, and buoy cleanings my hopes were pretty high that the surface buoy systems might actually make it through the season with recoveries scheduled in mid-October. Had I gambled and won? Nope. The call came in September from Leigh that one of the whale watching outfits in Depoe Bay recovered a free floating buoy matching ours. Bummer. Alternative recovery plans initiated and this is where things began to get hairy. Fortunately, we had an ace in our back pocket. We have collaborators at the Oregon Coast Aquarium (OCA) who have a top-notch research diving team led by Jim Burke. In the last week of October, they performed a successful search dive on the missing unit near Gull Rock and attached a new set of floats directly to the instrument frame. The divers were in the water for a short 20 minutes thanks to the good series of marks recorded during the buoy checks throughout the summer (Fig. 3).

Figure 3. OCA divers, Jenna and Doug, heading out for a search dive to locate and mark the Gull Rock hydrophone lander.

 

 

 

 

 

We had surface marker floats on the frame, but there was a new problem. Video taken by Jenna and Doug from the OCA dive team revealed the landers were pretty sanded in from a couple of recent October storms (Fig. 4). Ugghhh!

Figure 4. Sanded in lander at Gull Rock. Notice the sand dollars and bull kelp wrapped on the frame.

Alternative recovery plan adjustment: we’re gonna need a diver assisted recovery with 2 boats. One to bring a dive team to air jet the sand out away from the legs of the frame and another larger vessel with pulling power to recover the freed lander. Enter the R/V Pacific Surveyor and Capt. Al Pazar. Al, Jim and I came up with a new recovery plan and only needed a decent weather window of a few hours to get the job done. Piece of cake in November off the Oregon coast, right?

The weather finally cooperated in early December in-line with the OCA dive team and R/V Pacific Surveyor’s availability. The 2 vessels and crew headed up to Gull Rock for the first recovery operation of the day. At first we couldn’t locate the surface floats. Oh no. It seemed the rough fall/ winter weather and high seas since late October were too much for the crab floats? As it turns out, we eventually found the floats eastward about 200 m but couldn’t initially see them in the glare and whitecapping conditions that morning. The lander frame had broken loose from its weakened anchor legs in the heavy weather (as it was designed to do through an Aluminum/ Stainless Steel galvanic reaction over time) and rolled or hopped eastward by about 200 m (Fig. 5). Oh dear!

Figure 5. A hydrophone lander after recovery. Notice all but 1 of the concrete anchor legs missing from the recovered lander and the amount of bio-fouling on the hydrophone (compared to Figure 2).

 

 

 

 

 

 

Thankfully, the hydrophone was well protected, and no air jetting was required. With OCA divers out of the water and clear, the Pacific Surveyor headed over to the floats and easily pulled the lander frame and hydrophone on board (Fig. 6). Yipee!

On to the next hydrophone station. This station, deployed ~ 800 m west of the south reef off of South Beach near the Yaquina Bay port entrance. It was deployed entirely subsurface and was outfitted with an acoustic release transponder that I could communicate with from the surface and command to release a pop-up messenger float and line for eventual recovery of the instrument frame. Once on station, communication with the release was established easily (a good start) and we began ranging and moving the OCA vessel Gracie Lynn in to a position within about 2 water depths of the unit (~40 m). I gave the command to the transponder and the submerged release confirmed it was free of its anchor and heading for the surface, but it never made it. Uh oh. Turns out this lander had also broke free of its anchored legs and rolled/ hopped 800 m eastward until it was pinned up against the boulder structure of the south reef. Amazingly, OCA divers Jenna and Doug located the messenger float ~ 5 m below the surface and the messenger line had been fouled by the rolling frame so it could not reach the surface. They dove down the messenger line and attached a new recovery line to the lander frame and the Pacific Surveyor hauled up the frame and hydrophone in-tact (Fig. 6). Double recovery success!

Figure 6. R/V Pacific Surveyor recovering hydrophone landers off Gull Rock and South Beach.

The hydrophone data from both systems looks outstanding and analysis is underway. This recovery effort took a huge amount of patience and the coordination of 3 busy groups (NOAA/OSU, OCA, Capt. Al). Thanks to these incredible collaborations and some heroic diving from Jim Burke and his OCA dive team, we now have a unique and unprecedented shallow water passive acoustic data set from the energetic waters off the Oregon coast.

So that’s some of the story from the 2016 and 2017 field season acoustic point of view. I’ll save the less exciting, but equally successful instrument recoveries from Port Orford for another time.

Can we talk about how cool sea otters are?

By Dominique Kone, Masters Student in Marine Resource Management

A couple of months ago, I wrote a blog introducing our new project, and my thesis, on the potential to reintroduce sea otters to the Oregon coast. In that blog, I expressed that in order to develop a successful reintroduction plan, scientists and managers need to have a sound understanding of sea otter ecology and the current state of Oregon’s coastal ecosystems. As a graduate student conducting a research-based thesis in a management program, I’m constantly fretting over the applicability of my research to inform decision-making processes. However, in the course of conducting my research, I sometimes forget just how COOL sea otters are. Therefore, in this blog, I wanted to take the opportunity to nerd out and provide you with my top five favorite facts about these otterly adorable creatures.

Photo Credit: Point Lobos Foundation

Without further ado, here are my top five favorite facts about sea otters:

  1. Sea otters eat a lot. Previous studies show that an individual sea otter eats up to 30% of its own body weight in food each day[1][2]. With such high caloric demands, sea otters spend a great deal of their time foraging the seafloor for a variety of prey species, and have been shown to decrease prey densities in their local habitat significantly. Sea otters are famously known for their taste for sea urchins. Yet, these voracious predators also consume clams, sea stars, crabs, and a variety of other small invertebrate species[3][4].

    Photo Credit: Katherine Johns via www.listal.com
  2. Individuals are specialists, but can change their diet. Sea otters typically show individual foraging specialization – which means an individual predominantly eats a select few species of prey. However, this doesn’t mean an otter can’t switch or consume other types of prey as needed. In fact, while individuals tend to be specialists, on a population or species level, sea otters are actually generalist predators[5][6]. Past studies that looked at the foraging habits of expanding sea otter populations show that as populations expand into unoccupied territory, they typically eat a limited number of prey. But as populations grow and become more established, the otters will start to diversify their diet, suggesting intra-specific competition[3][7].
  3. Sea otters exert a strong top-down force. Top-down forcing is one of the most important concepts we must acknowledge when discussing sea otter ecology. With top-down forcing, consumers at the top of the food chain depress the trophic level on which they feed, and this feeding indirectly increases the abundance of the next lower trophic level, resulting in a cascading effect[8]. The archetype example of this phenomenon is the relationship between sea otters, sea urchins, and kelp forests. This relationship goes as follows: sea otters consume sea urchin, and sea urchins graze on kelp. Therefore, sea otters reduce sea urchin densities by direct predation, thereby mediating grazing pressure on kelp. This indirect effect allows kelp to grow more abundantly, which is why we often see relatively productive kelp forests when sea otters are present[9]. This top-down forcing also has important implications for the whole ecosystem, as I’ll explain in my next fact.

    Pictured: sea urchin dominated seascape in habitat without sea otters. Photo Credit: BISHOPAPPS via Ohio State University.
  4. Sea otters help restore ecosystems, and associated ecosystem services. In kelp habitat where sea otters have been removed, we often see high densities of sea urchins and low biomasses of kelp. In this case, sea urchins have no natural predators to keep their populations in check and therefore completely decimate kelp forests. However, what we’ve learned is that when sea otters “reclaim” previously occupied habitats or expand into unoccupied territory, they can have remarkable restorative effects because their predation on sea urchins allows for the regrowth of kelp forest[10]. Additionally, with the restoration of key ecosystems like kelp forests, we can see a variety of other indirect benefits – such as increased biodiversity, refuge for fish nurseries and commercially-important species, and carbon sequestration[11][12][13]. The structure of nearshore ecosystems and communities change drastically with the addition or removal of sea otters, which is why they’re often referred to as keystone species.

    Photo Credit: University of California, Santa Barbara.
  5. Sea otters are most often associated with coastal kelp forests, but they can also exist in other types of habitats and ecosystems. In addition to kelp dominated ecosystems, sea otters are known to use estuaries and bays, seagrass beds, and swim over a range of bottom substrates[14][15]. As evidenced by previous studies, sea otters exert similar top-down forces in non-kelp ecosystems, as they do within kelp forests. One study found that sea otters also had restorative effects on seagrass beds within estuaries, where they consumed different types of prey (i.e., crabs instead of urchins), demonstrating that sea otters play a significant keystone role in seagrass habitats as well [12]. Findings such as these are vitally important to understanding (1) where sea otters are capable of living relative to habitat characteristics, and (2) how recovering or expanding sea otter populations may impact ecosystems and habitats in which they don’t currently exist, such as the Oregon coast.
Pictured: sea otter swimming through eel grass at Elkhorn Slough, California. Photo Credit: Kip Evans Photography.

Well, there you have it – my top five favorite facts about sea otters. This list is by no means exhaustive of all there is to know about sea otter ecology, and isn’t enough information to develop an informative reintroduction plan. However, a successful reintroduction plan will rely heavily on these underlying ecological characteristics of sea otters, in addition to the current state of Oregon’s nearshore ecosystems. As someone who constantly focuses on the relationship between scientific research and management and conservation, it’s nice every now and then to take a step back and just simply appreciate sea otters for being, well, sea otters.

References:

[1] Costa, D. P. 1978. The ecological energetics, water, and electrolyte balance of the California sea otter (Enhydra lutris). Ph.D. dissertation, University of California, Santa Cruz.

[2] Reidman, M. L. and J. A. Estes. 1990. The sea otter (Enhydra lutris): behavior, ecology, and natural history. United States Department of the Interior, Fish and Wildlife Service, Biological Report. 90: 1-126.

[3] Laidre, K.L. and R. J. Jameson. 2006. Foraging patterns and prey selection in an increasing and expanding sea otter population. Journal of Mammology. 87(4): 799-807.

[4] Estes, J. A., Jameson, R.J., and B. R. Rhode. 1982. Activity and prey election in the sea otter: influence of population status on community structure. The American Naturalist. 120(2): 242-258.

[5] Tinker, M. T., Costa, D. P., Estes, J. A., and N. Wieringa. 2007. Individual dietary specialization and dive behavior in the California sea otter: using archival time-depth data to detect alternative foraging strategies. Deep-Sea Research Part II. (54):330-342.

[6] Newsome et al. 2009. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology. 90(4): 961-974.

[7] Ostfeld, R. S. 1982. Foraging strategies and prey switching in the California sea otter. Oecologia. 53(2): 170-178.

[8] Paine, R. T. 1980. Food webs: linkage, interaction strength and community infrastructure. The Journal of Animal Ecology. 49(3): 666-685.

[9] Estes, J. A. and J.F. Palmisano. 1974. Sea otters: their role in structuring nearshore communities. Science. 185(4156): 1058-1060.

[10] Estes, J. A., and D. O. Duggins. 1995. Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecological Monographs. 65(1): 75-100.

[11] Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L., and B. Konar. 2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Frontiers in Ecology and the Environment. 10(8): 409-415.

[12] Hughes et al. 2014. Recovery of a top predator mediate negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences. 110(38): 15313-15318.

[13] Lee, L.C., Watson, J. C., Trebilco, R., and A. K. Salomon. Indirect effects and prey behavior mediate interactions between an endangered prey and recovering predator. Ecosphere. 7(12).

[14] Laidre, K. L., Jameson, R. J., Gurarie, E., Jeffries, S. J., and H. Allen. 2009. Spatial habitat use patterns of sea otters in coastal Washington. Journal of Mammalogy. 90(4): 906-917.

[15] Lafferty, K. D., and M. T. Tinker. 2014. Sea otters are recolonizing southern California in fits and starts. Ecosphere. 5(5).

 

Skype a Scientist – Are you smarter than a middle schooler?

By Florence Sullivan, MSc

What do baby whales eat?

Does the mom whale take care of the baby whale alone?

How do whales communicate?

What are their behaviors?

These are the questions 4th grade students half a world away asked me.  They are studying biodiversity and were very curious to meet a real life scientist.  It was 2:00pm on a Tuesday here in Newport, OR, while in Australia, this classroom full of students was sitting in their 9:00am Wednesday science class.  We had an hour-long conversation about gray whale behaviors, habitat, life cycle, and general biology – all thanks to the wonders of science, technology and the computer program, Skype. The next day, I did it all again, and Skyped in to a classroom in British Columbia, to field questions about gray whales, right whales and science careers from a group of enthusiastic 5th and 6th grade students.

 

A class of Australian 4th graders had many imaginative questions for me through the Skype a Scientist Program.

But how in the world did I end up answering questions over Skype for a classroom full of kids in the first place? Like many good things, it began with a conversation.  During the 2016 USA election cycle, it became apparent that many people in this country distrust scientists. Sarah McAnulty, a PhD student at the University of Connecticut who studies the immune system of bob tail squid, had already been engaging in informal science communication through a profile on tumblr.  But posting things on tumblr is like preaching to the choir – your audience tends to be people who are already interested in your subject. If the problem is trying to change the public perception of scientists from aloof and insular to trustworthy and approachable, you need to start by finding people who have a lot of questions, and few pre-existing prejudices.  Who fits the bill perfectly? Kids!

After conversations with colleagues, she came up with the idea of using Skype to reach classrooms of students outside of the range where scientists usually congregate (large cities and universities).  Sarah started by connecting a handful of UConn colleagues with K-12 teachers through Facebook, but the idea quickly gained steam through mentions at a scientific conference, posts on the ‘March for Science’ Facebook group, media coverage, and word-of-mouth sharing between colleagues on both the teaching and the research side of the story.  Now, there is a full-fledged website (https://www.skypeascientist.com/) where teachers and scientists can sign up to be matched based on availability, topic, and sometimes, demographic.  When pairing classrooms and scientists, Sarah makes an effort for minority students (whether this means race, gender, disability, language, or other) to see themselves represented in the scientists they get to talk to, if possible.  Representation matters –we are beyond the age of old white men in lab coats being the only ‘real scientists’ represented in media, but unfortunately, the stereotype is not dead yet! In less than a year, the program has grown to over 1900 scientists, with new fields of expertise being added frequently as people spread the word and get interested.  The program has been, and promises to continue being, an excellent resource for teachers who want to show the relevance of the subjects being discussed in their classrooms. As evidenced by the fact that I spoke with a classroom in Australia, this is a global program – check out the maps below to see where students and scientists are coming from!

This map shows the locations of all participating classrooms, current on Oct 12, 2017.
This map shows the locations of all participating scientists, current on October 22, 2017.

As for myself, I got involved because my lab mate, Alexa, mentioned how much fun she had Skyping with students.  The sign-up process was incredibly easy, and when I got matched with two classrooms, the organizers even provided a nice mad-libs style ‘fill in the blank’ introduction letter so that I didn’t waste time agonizing over how to introduce myself.

Introductory Mad-libs for scientists. Courtesy of the Skype a Scientist program.

I sent the classrooms the youtube video of my field work, and a couple of these blog posts, and waited to hear back.  I was very impressed with the 5th/6th grade class from British Columbia because the teacher actually let the students take the lead from the get-go.  One of the students replied to my email, told me what they were studying, and started the process of scheduling a meeting time that would work for both of us. When I called in, two other students took the reins, and acted as spokespeople for the rest of their classmates by repeating questions from the back of the room so that I could hear everything clearly. It was so fun to see and hear the enthusiasm of the students as they asked their questions.  Their deep curiosity and obvious excitement about the subject matter was contagious, and I found my own tone, body language, and attitude shifting to match theirs as I helped them discover the building blocks of marine ecology that I have long accepted as normal. This two way street of learning is a good reminder that we all start somewhere.

If you are interested in the program at all, I encourage you to sign up at this link: (https://www.skypeascientist.com/). Who knows, engaging with kids like this just might remind you of the innocent curiosity of childhood that brought you to your scientific career in the first place.

 

Here are some of my favorite question that I was asked, and the responses I gave:

  • How do gray whales communicate?

With songs and underwater sounds! Check out this great website for some great examples, and prepare to be amazed! (I played the Conga and the belch-like call during the skype session, much to the amusement of the students)  https://www.sanignaciograywhales.org/project/acoustics/

  • What do baby whales eat?

Whales are mammals just like us, so believe it or not, baby whales drink their mother’s milk!

  • How long have you been a marine special ecologist for?

My favorite bit here was the mis-spelling, which made me a ‘special’ ecologist instead of a ‘spatial’ ecologist.  So I talked about how spatial ecology is a special type of ecology where we look at how big things move in the ocean!

  • My question is, can a grey whale bite people if people come close to them?
    This was a chance to show off our lab baleen samples!  I also took the time to look this up, and it turns out that bite is defined as “using teeth to cut into something” and a gray whale doesn’t have teeth!  Instead, they have baleen, which they use to sieve stuff out of the water.  So I don’t think you need to worry about getting bitten by a gray whale. That being said, it’s important not to get close to them, because they are so much bigger than us that they could hurt us on accident.

 

  • When you go out to see the whales, why don’t you use slightly bigger boats so you don’t flip over if the whale gets too close to you, or when you get to close to the whale?
    Our research kayak is a never-ending delight. It’s less expensive than a bigger boat, and doesn’t use fossil fuels. We want to be quiet in the water and not disturb the whale, and actively avoid getting within 100 yards so there shouldn’t be any danger. Sometimes the whales surprise us though, and we have to be careful. In this case, everyone has safety training and is able to rescue themselves if the boat should flip.

(This led to an entertaining discussion of field safety, and the appalling idea that I would make my interns jump out of the kayak into cold Pacific water on purpose during safety training)

There were many more questions, but why don’t you give the program a try, and see what kind of questions you get to answer?!

Safety First!