GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.

 

The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.

 

Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

Observing humpback whales through the clear New Caledonian waters

Solène Derville, Entropie Lab, French National Institute for Sustainable Development (IRD – UMR Entropie), Nouméa, New Caledonia

Ph.D. student under the co-supervision of Dr. Leigh Torres

Drone technology has illustrated itself as particularly useful to the study of cetacean in the GEMM Lab (see previous post by Dawn and Leila) and in the marine mammal research community in general. The last Conference on the Biology of Marine Mammals in Halifax staged several talks and posters describing the great potential of drones for observing animal behaviors, collecting blow samples, estimating the size and health of animals, or estimating densities. The GEMM Lab has been conducting leading research in this field, from capturing exceptional footages of lunge feeding blue whales in New Zealand, to measuring gray whale health on the Oregon coast.

Using drones in New Caledonia

In September 2017 I participated in a scientific cruise undertaken by Opération Cétacés /IRD to study New Caledonian humpback whales, and we were lucky to be joined by Nicolas Job, a professional diver, photographer and drone pilot. It was one of those last minute decisions: one of our crewmates canceled the week before the survey and we thought “who could we bring on instead?”. We barely knew the man but figured it would be good to get a few humpback whale drone images… We invited him to join us on the research expedition only a few days before the trip but this is not the kind of opportunity that a photographer would pass on!

Far from trying to acquire scientific data in the way the GEMM Lab does with blue whales and gray whales, we were only hoping to take “pretty pictures”… we were not disappointed.

Once we got past a few unexpected issues (YES you need to wear gloves to protect your fingers when trying to catch a flying drone (Fig 1), and NO frigate birds will not attack drones as long as they don’t smell like fish), Nicolas managed to fly the drone above our small research boat and capture footage of several humpback whale groups, including mothers with calf and competitive groups.

Figure 1: Frigate birds are known to attack birds in flight to steal their meal straight from their beak…luckily they did not attack our drone! On the contrary, it seems like they could help scientists one day as it has been suggested that UAV builders could learn from their exceptional soaring behavior that allows months-long transoceanic flights (photo credit: Henri Zemerskirch CEBC CNRS) .

As I said, no groundbreaking science here, but this experience convinced me that drones can bring a new perspective to the way we observe and interpret animal behavior. As a known statistics/R-lover in the lab, I often get so excited by the intricacies of data analysis that I forget I am studying these giant, elegant, agile, and intelligent sea creatures (Fig 2). And the video clips that Nicolas put together just reminded me of that.

The clear waters of the Natural Park of the Coral Sea allowed us to see whales as far as 30 meters deep in some areas! This perspective turned our usual surface observations into 3D. We could see escorts guarding maternal females and preventing other males from approaching by producing bubble trails. Escorts also extended their pectoral fins on either side of their body, a behavior supposed to make them look more imposing in the presence of a challenger. Competitive groups were also very impressive from above. During the breeding season, competitive groups form when several males aggregate around a female and compete for it. These groups typically travel at high speed and are characterized by active surface behaviors such as tail slaps, head lunges, and bubble trails.

Figure 2: This female humpback whale was encountered in 2016 and 2017. Her white flanks make her particularly easy to recognize. On both occasions it put on a show and kept circling the Amborella oceanographic vessel for more than an hour. To provide a sense of scale, the vessel on this drone footage is 24 m long (photo credit: Nicolas Job).

Drones and seamounts

Since the discovery of humpback whale offshore breeding areas in Antigonia seamount in 2007 and Orne bank in 2016, a lot of research has been conducted to better understand habitat preferences, distributions and connectivity in oceanic waters of New Caledonia (see previous post). Surveys have always been strongly multidisciplinary, including boat-based observation, biopsy sampling, and photo-identification, satellite tracking, in situ oceanographic measurements and acoustics. Will drones soon become an essential component of this toolbox?

One potential application I could imagine for my personal research questions would be to use aerial photogrammetry to measure the size of newborn calves. Indeed, we have found that offshore seamounts are used by a relatively great number of mothers with calf (Derville, Torres & Garrigue, In Press JMAMM). This finding is counter intuitive to the paradigm that maternal females prefer sheltered, shallow and coastal waters as shown in many breeding grounds around the world. Yet, we believe unsheltered oceanic areas might become more attractive to maternal females as the calf grows bigger and more robust to harsh sea states and encounters with competitive adult males. Drone photogrammetry of calves could likely help us confirm this hypothesis.

But for now, I will leave the science behind for a bit and let you enjoy the sheer beauty of this footage!

Film directed by Nicolas Job (Heos Marine) with images collected during the MARACAS3 survey (Marine Mammals of the Coral Sea: IRD/ UMR Entropie/Opération Cétacés/ Gouv.nc/ WWF/ Ministère de la Transition écologique et solidaire).

A Marine Mammal Odyssey, Eh!

By Leila Lemos, PhD student

Dawn Barlow, MS student

Florence Sullivan, MS

The Society for Marine Mammalogy’s Biennial Conference on the Biology of Marine Mammals happens every two years and this year the conference took place in Halifax, Nova Scotia, Canada.

Logo of the Society for Marine Mammalogy’s 22nd Biennial Conference on the Biology of Marine Mammals, 2017: A Marine Mammal Odyssey, eh!

The conference started with a welcome reception on Sunday, October 22nd, followed by a week of plenaries, oral presentations, speed talks and posters, and two more days with different workshops to attend.

This conference is an important event for us, as marine mammalogists. This is the moment where we get to share our projects (how exciting!), get important feedback, and hear about different studies that are being conducted around the world. It is also an opportunity to network and find opportunities for collaboration with other researchers, and of course to learn from our colleagues who are presenting their work.

The GEMM Lab attending the opening plenaries of the conference!

The first day of conference started with an excellent talk from Asha de Vos, from Sri Lanka, where she discussed the need for increased diversity (in all aspects including race, gender, nationality, etc.) in our field, and advocated for the end of “parachute scientists” who come into a foreign (to them) location, complete their research, and then leave without communicating results, or empowering the local community to care or act in response to local conservation issues.  She also talked about the difficulty that researchers in developing countries face accessing research that is hidden behind journal pay walls, and encouraged everyone to get creative with communication! This means using blogs and social media, talking to science communicators and others in order to get our stories out, and no longer hiding our results behind the ivory tower of academia.  Overall, it was an inspirational way to begin the week.

On Thursday morning we heard Julie van der Hoop, who was this year’s recipient of the F.G. Wood Memorial Scholarship Award, present her work on “Drag from fishing gear entangling right whales: a major extinction risk factor”. Julie observed a decrease in lipid reserves in entangled whales and questioned if entanglements are as costly as events such as migration, pregnancy or lactation. Tags were also deployed on whales that had been disentangled from fishing gear, and researchers were able to see an increase in whale speed and dive depth.

Julie van der Hoop talks about different drag forces of fishing gears
on North Atlantic Right Whales.

There were many other interesting talks over the course of the week. Some of the talks that inspired us were:

— Stephen Trumble’s talk “Earplugs reveal a century of stress in baleen whales and the impact of industrial whaling” presented a time-series of cortisol profiles of different species of baleen whales using earplugs. The temporal data was compared to whaling data information and they were able to see a high correlation between datasets. However, during a low whaling season concurrent to the World War II in the 40’s, high cortisol levels were potentially associated to an increase in noise from ship traffic.

— Jane Khudyakov (“Elephant seal blubber transcriptome and proteome responses to single and repeated stress”) and Cory Champagne (“Metabolomic response to acute and repeated stress in the northern elephant seal”) presented different aspects of the same project. Jane looked at down/upregulation of genes (downregulation is when a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus; upregulation is the opposite: when the cell increases the quantity of cellular components) to check for stress. She was able to confirm an upregulation of genes after repeated stressor exposure. Cory checked for influences on the metabolism after administering ACTH (adrenocorticotropic hormone: a stimulating hormone that causes the release of glucocorticoid hormones by the adrenal cortex. i.e., cortisol, a stress related hormone) to elephant seals. By looking only at the stress-related hormone, he was not able to differentiate acute from chronic stress responses. However, he showed that many other metabolic processes varied according to the stress-exposure time. This included a decrease in amino acids, mobilization of lipids and upregulation of carbohydrates.

— Jouni Koskela (“Fishing restrictions is an essential protection method of the Saimaa ringed seal”) talked about the various conservation efforts being undertaken for the endangered Lake Saimaa ringed seal. Gill nets account for 90% of seal pup mortality, but if new pups can reach 20kg, only 14% of them will drown in these fishing net entanglements. Working with local industry and recreational interests, increased fishing restrictions have been enacted during the weaning season. In addition to other year-round restrictions, this has led to a small, but noticeable upward trend in pup production and population growth! A conservation success story is always gratifying to hear, and we wish these collaborative efforts continued future success.

— Charmain Hamilton (“Impacts of sea-ice declines on a pinnacle Arctic predator-prey relationship: Habitat, behaviour, and spatial overlap between coastal polar bears and ringed seals”) gave a fascinating presentation looking at how changing ice regimes in the arctic are affecting spatial habitat use patterns of polar bears. As ice decreases in the summer months, the polar bears move more, resulting in less spatial overlap with ringed seal habitat, and so the bears have turned to targeting ground nesting seabirds.  This spatio-temporal mismatch of traditional predator/prey has drastic implications for arctic food web dynamics.

— Nicholas Farmer’s presentation on a Population Consequences of Disturbance (PCoD) model for assessing theoretical impacts of seismic survey on sperm whale population health had some interesting parallels with new questions in our New Zealand blue whale project. By simulating whale movement through modeled three-dimensional sound fields, he found that the frequency of the disturbance (i.e., how many days in a row the seismic survey activity persisted) was very important in determining effects on the whales. If the seismic noise persists for many days in a row, the sperm whales may not be able to replenish their caloric reserves because of ongoing disturbance. As you can imagine, this pattern gets worse with more sequential days of disturbance.

— Jeremy Goldbogen used suction cup tags equipped with video cameras to peer into an unusual ecological niche: the boundary layer of large whales, where drag is minimized and remoras and small invertebrates compete and thrive. Who would have thought that at a marine mammal conference, a room full of people would be smiling and laughing at remoras sliding around the back of a blue whale, or barnacles filter feeding as they go for a ride with a humpback whale? Insights from animals that occupy this rare niche can inform improvements to current tag technologies.

The GEMM Lab was well represented this year with six different talks: four oral presentations and two speed talks! It is evident that all of our hard work and preparation, such as practicing our talks in front of our lab mates two weeks in advance, paid off.  All of the talks were extremely well received by the audience, and a few generated intelligent questions and discussion afterwards – exactly as we hoped.  It was certainly gratifying to see how packed the room was for Sharon’s announcement of our new method of standardizing photogrammetry from drones, and how long the people stayed to talk to Dawn after her presentation about an unique population of New Zealand blue whales – it took us over an hour to be able to take her away for food and the celebratory drinks she deserved!

GEMM Lab members on their talks. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

 

GEMM Lab members at the closing celebration. From left to right: Florence Sullivan, Leila Lemos, Amanda Holdman, Solène Derville, and Dawn Barlow.
We are not always serious, we can get silly sometimes!

The weekend after the conference many courageous researchers who wanted to stuff their brains with even more specialized knowledge participated in different targeted workshops. From 32 different workshops that were offered, Leila chose to participate in “Measuring hormones in marine mammals: Current methods, alternative sample matrices, and future directions” in order to learn more about the new methods, hormones and matrices that are being used by different research groups and also to make connections with other endocrinologist researchers. Solène participated in the workshop “Reproducible Research with R, Git, and GitHub” led by Robert Shick.  She learned how to better organize her research workflow and looks forward to teaching us all how to be better collaborative coders, and ensure our analysis is reproducible by others and by our future selves!

On Sunday none of us from the GEMM Lab participated in workshops and we were able to explore a little bit of the Bay of Fundy, an important area for many marine mammal species. Even though we didn’t spot any marine mammals, we enjoyed witnessing the enormous tidal exchange of the bay (the largest tides in the world), and the fall colors of the Annaoplis valley were stunning as well. Our little trip was fun and relaxing after a whole week of learning.

The beauty of the Bay of Fundy.
GEMM Lab at the Bay of Fundy; from left to right: Kelly Sullivan (Florence’s husband and a GEMM Lab fan), Florence Sullivan, Dawn Barlow, Solène Derville, and Leila Lemos.
We do love being part of the GEMM Lab!

It is amazing how refreshing it is to participate in a conference. So many ideas popping up in our heads and an increasing desire to continue doing research and work for conservation of marine mammals. Now it’s time to put all of our ideas and energy into practice back home! See you all in two years at the next conference in Barcelona!

Flying out of Halifax!

The GEMM Lab is Conference-Bound!

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Every two years, an international community of scientists gather for one week to discuss the most current and pressing science and conservation issues surrounding marine mammals. The thousands of attendees range from longtime researchers who have truly shaped the field throughout the course of their careers to students who are just beginning to carve out a niche of their own. I was able to attend the last conference, which took place in San Francisco in 2015, as an undergraduate. The experience cemented my desire to pursue marine mammal research in graduate school and beyond, and also solidified my connection with Leigh Torres and the Geospatial Ecology of Marine Megafauna Laboratory, leading to my current enrollment at Oregon State University. This year, the 22nd Biennial Conference on the Biology of Marine Mammals takes place in Halifax, Nova Scotia, Canada. At the end of this week, Florence, Leila, Amanda, Solene, Sharon and I will head northeast to represent the GEMM Lab at the meeting!

As those of you reading this may not be able to attend, I’d like to share an overview of what we will be presenting next week. If you will be in Halifax, we warmly invite you to the following presentations. In order of appearance:

Amanda will present the final results from part of her MSc thesis on Monday in a presentation titled Comparative fine-scale harbor porpoise habitat models developed using remotely sensed and in situ data. It will be great for current GEMM Lab members to catch up with this recent GEMM Lab graduate on the other side of the continent! (Session: Conservation; Time: 4:00 pm)

On Tuesday morning, Leila will share the latest and greatest updates on her research about Oregon gray whales, including photogrammetry from drone images and stress hormones extracted from fecal samples! Her presentation is titled Combining traditional and novel techniques to link body condition and hormone variability in gray whales. This is innovative and cutting-edge work, and it is exciting to think it will be shared with the international research community. (Session: Health; Time: 10:45 am)

Did you think humpback whales have been so well studied that we must know just about everything about them? Think again! Solene will be sharing new and exciting insights from humpback whales tagged in New Caledonia, who appear to spend an intriguing amount of time around seamounts. Her talk Why do humpback whales aggregate around seamounts in South Pacific tropical waters? New insights from diving behaviour and ocean circulation analyses, will take place on Tuesday afternoon. (Session: Habitat and Distribution Speed Talks; Time: 1:30 pm)

I will be presenting the latest findings from our New Zealand blue whale research. Based on multiple data streams, we now have evidence for a unique blue whale population which is present year-round in New Zealand waters! This presentation, titled From migrant to resident: Multiple data streams point toward a resident New Zealand population of blue whales, will round out the oral presentations on Tuesday afternoon. (Session: Population Biology and Abundance; Time: 4:45 pm)

The GEMM Lab is using new technologies and innovative quantitative approaches to measure gray whale body condition and behaviors from an aerial perspective. On Wednesday afternoon, Sharon will present Drone up! Quantifying whale behavior and body condition from a new perspective on behalf of Leigh. With the emerging prevalence of drones, we are excited to introduce these quantitative applications. (Session: New Technology; Time: 11:45 am)

GoPros, kayaks, and gray whales, oh my! A limited budget couldn’t stop Florence from conducting excellent science and gaining new insights into gray whale fine-scale foraging. On Thursday afternoon, she will present Go-Pros, kayaks and gray whales: Linking fine-scale whale behavior with prey distributions on a shoestring budget, and share her findings, which she was able to pull off with minimal funds, creative study design, and a positive attitude. (Session: Foraging Ecology Speed Talks; Time: 1:55 pm)

Additional Oregon State University students presenting at the conference will include Michelle Fournet, Samara Haver, Niki Diogou, and Angie Sremba. We are thrilled to have such good representation at a meeting of this caliber! As you may know, we are all working on building the GEMM Lab’s social media presence and becoming more “twitterific”. So during the conference, please be sure to follow @GEMMLabOSU on twitter for live updates. Stay tuned!

Exploring the Coral Sea in Search of Humpbacks

By: Solène Derville, Entropie Lab, Institute of Research for Development, Nouméa, New Caledonia (Ph.D. student under the co-supervision of Dr. Leigh Torres)

Once again the austral winter is ending, and with it ends the field season for the scientific team studying humpback whales in New Caledonia. Through my PhD, I have become as migratory as my study species so this is also the time for me to fly back to Oregon for an intense 3 months of data analysis at the GEMM Lab. But before packing, it is time for a sum-up!

In 2014, the government of New Caledonia has declared all waters of the Economic Exclusive Zone to be part of a giant marine protected area: the Natural Park of the Coral Sea. These waters are seasonally visited by a small and endangered population of humpback whales whose habitat use patterns are poorly known. Indeed, the park spans more than 1.3 million km2 and its most remote and pristine areas therefore remained pretty much unexplored in terms of cetacean presence… until recently.

In 2016, the project WHERE “Humpback Whale Habitat Exploration to improve spatial management in the natural park of the CoRal Sea” was launch by my PhD supervisor, Dr. Garrigue, and I, to conduct surveys in remote reefs, seamounts and shallow banks surrounding New Caledonia mainland. The aim of the project is to increase our understanding of habitat use and movements of humpback whales in breeding grounds over a large spatial scale and predict priority conservation areas for the park.

Fig. 1. A humpback whale with our research vessel, the oceanographic vessel Alis, in the background.

This season, three specific areas were targeted for survey during the MARACAS expeditions (Marine Mammals of the Coral Sea):

– Chesterfield and Bellona reefs that surround two huge 30- to 60m-deep plateaus and are located halfway between New Caledonia and Australia (Fig. 4). Considered as part of the most pristine reefs in the Coral Sea, these areas were actually identified as one of the main hotspots targeted by the 19th century commercial whaling of humpback whales in the South Pacific (Oremus and Garrigue 2014). Last year’s surveys revealed that humpback whales still visit the area, but the abundance of the population and its connection to the neighboring breeding grounds of New Caledonia and Australia is yet to establish.

Fig. 2. The tiny islands along the Chesterfield and Bellona reefs also happen to host nesting sites for several species of boobies and terns. Here, a red-footed booby (Sula sula).

– Walpole Island and Orne bank are part of the shallow areas East of the mainland of New Caledonia (Fig. 4), where several previously tagged whales were found to spend a significant amount of time. This area was explored by our survey team for the first time last year, revealing an unexpected density of humpback whales displaying signs of breeding (male songs, competitive groups) and nursing activity (females with their newborn calf).

Fig. 3. The beautiful cliffs of Walpole Island rising from the Pacific Ocean.

Antigonia seamount, an offshore breeding site located South of the mainland (Fig. 4) and known for its amazingly dense congregations of humpback whales.  The seamount rises from the abyssal seabed to a depth of 60 m, with no surfacing island or reef to shelter either the whales or the scientists from rough seas.

Fig. 4. Map of the New Caledonia Economic Exclusive Zone (EEZ) and the project WHERE study areas (MARACAS expeditions).

During our three cruises, we spent 37 days at-sea while a second team continued monitoring the South Lagoon breeding ground. Working with two teams at the same time, one covering the offshore breeding areas and the other monitoring the coastal long-term study site of the South Lagoon, allowed us to assess large scale movements of humpback whales within the breeding season using photo-ID matches. This piece of information is particularly important to managers, in order to efficiently protect whales both within their breeding spots, and the potential corridors between them.

So how would you study whales over such a large scale?

Well first, find a ship. A LARGE ship. It takes more than 48 hours to reach the Chesterfield reefs. The vessel needs to carry enough gas necessary to survey such an extensive region, plus the space for a dinghy big enough to conduct satellite tagging of whales. All of this could not have been possible without the Amborella, the New Caledonian governement’s vessel, and the Alis, a French oceanographic research vessel.

Second, a team needs to be multidisciplinary. Surveying remote waters is logistically challenging and financially costly, so we had to make it worth our time. This season, we combined 1) photo-identification and biopsy samplings to estimate population connectivity, 2) acoustic monitoring using moored hydrophone (one of which recorded in Antigonia for more than two months, Fig. 5), 3) transect lines to record encounter rates of humpback whales, 4) in situ oceanographic measurements, and finally 5) satellite tracking of whales using the recent SPLASH10 tags (Wildlife Computers) capable of recording dive depths in addition to geographic positions (Fig. 6).

Fig. 5. Claire, Romain and Christophe standing next to our moored hydrophone, ready for immersion.

Satellite tracks and photo-identification have already revealed some interesting results in terms of connectivity within the park and with neighboring wintering grounds.

Preliminary matching of the caudal fluke pictures captured this season and in 2016 with existing catalogues showed that the same individuals may be resighted in different regions of the Park. For instance, some of the individuals photographed in Chesterfield – Bellona, had been observed around New Caledonia mainland in previous years! This match strengthens our hypothesis of a connection between Chesterfield reef complex and New Caledonia.

Yet, because the study of whale behavior is never straightforward, one tagged whale also indicated a potential connection between Chesterfield-Bellona and Australia East coast (Fig. 6). This is the first time a humpback whale is tracked moving between New Caledonia and East Australia within a breeding season. Previous matches of fluke catalogues had shown a few exchanges between these two areas but these comparisons did not include Chesterfield. Is it possible that the Chesterfield-Bellona coral reef complex form a connecting platform between Australia and New Caledonia? The matching of our photos with those captured by our Australian colleagues who collected data at the Great Barrier Reef  in 2016 and 2017 should help answer this question…

Fig. 6. “Splash” was tagged in Chesterfield in August and after spending some time in Bellona it initiated a migration south. Seamounts seem to play an important role for humpback whales in the region, as “Splash” stopped on Kelso and Capel seamount during its trip. It reached the Australian coast a couple of days ago and we are looking forward to discover the rest of its route!

While humpback whales often appear like one of the most well documented cetacean species, it seems that there is yet a lot to discover about them!

Acknowledgements:

These expeditions would not have been possible without the financial and technical support of the French Institute of Research for Development, the New Caledonian government, the French  Ministère de la Transition Ecologique et Solidaire, and the World Wide Fund for Nature. And of course, many thanks to the Alis and Amborella crews, and to our great fieldwork teammates: Jennifer Allen, Claire Bonneville, Hugo Bourgogne, Guillaume Chero, Rémi Dodémont, Claire Garrigue, Nicolas Job, Romain Le Gendre, Marc Oremus, Véronique Pérard, Leena Riekkola, and Mike Williamson.

Fig. 7A. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).
Fig. 7B. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).
Fig. 7C. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).

Reporting back on the Whales in a Changing Ocean Conference

Solène Derville, Entropie Lab, Institute of Research for Development, Nouméa, New Caledonia (Ph.D. student under the co-supervision of Dr. Leigh Torres)

My flight back to New Caledonia gives me time to think and process all that I have experienced in the last few days. From April 4th to 6th, I had the great opportunity to attend the “Whales in a Changing Ocean” conference held in Nuku’alofa, in the Kingdom of Tonga. This conference organized by SPREP (Secretariat of the Pacific Regional Environment Programme) as part of the “Protect Pacific Whales – Ocean Voyagers” campaign brought together members of the Pacific Island governments, whale-watching operators, NGOs, IGOS and scientists.

Opening ceremony

As a relatively novice PhD student studying humpback whale spatial ecology in New Caledonia this was my first experience attending a conservation and management focused conference. To be completely honest, when I was asked to attend the conference as part of the work I am conducting on the effect of environmental changes on humpbacks of the South Pacific breeding grounds, I gladly accepted the offer, as an opportunity for me to learn more about the political mechanisms underlying international conservation plans. However, I was a little sceptical as to what tangible outputs could come out of such event. How would the science be integrated into this rather political event? How many delegations would be able to make it? Would they manage to agree on strong objectives regarding the conservation of cetaceans in the region?

Leena Riekkola, a PhD student at University of Auckland, and I with traditional flower necklaces offered by the organizers

On the first day of the conference, we sat through several hours of formal opening ceremony and comments from the governmental delegations that had travelled to Tonga from all over the Pacific: Samoa, Papua New Guinea, Tuvalu, Niue, French Polynesia, New Zealand, Australia, the Cook Islands, Palau, Fiji and many others. These comments mainly consisted of a succession of (well deserved) acknowledgments to the Tongan government for hosting the event and the enumeration of the endless list of threats faced by cetaceans in the region. Despite the tedious nature of this inevitable display of etiquette, I was impressed by the sight of all these governmental and non-governmental delegations sitting around the same table to discuss the future of whales. I was surprised to hear a note of emotion in several of the speeches that day. I clearly had not realized how valuable whales are to the Pacific islanders. Valuable economically of course, as whale watching is one of the most important drivers of tourism to several of these islands, most of all to Tonga. But also importantly, whales and dolphins bear a strong cultural value to the people of the Pacific. Many of the attendees shared stories and legends about whales, and I quickly realized that these animals were indeed a “cultural heritage” that people were eager to protect and preserve.

The next two days of the conference were built around a series of plenaries and workshops surrounding 3 themes: sustainable whale-watching, scientific research and emerging threats. While I was initially a bit lost and did not quite understand where all of this was going, I progressively saw several recommendations and objectives emerging from the discussions. By the end of the conference, I realized how much had been accomplished in only three days and that these achievements were more than just words. Four main outcomes resulted from this conference:

  • The commitment to adopt and sign a Pacific Island Year of the Whale Declaration by 11 nations/territories of the region (out of 21), namely: Australia, the Cook Islands, Fiji, New Caledonia, New Zealand, Palau, Papua New Guinea, Samoa, Tonga, Tokelau and Tuvalu. Not all of the governmental representatives were able to sign but it is likely that some will join later.

  • The agreement to a voluntary commitment to “Protect, conserve and restore whale populations in the Pacific islands, which will be presented at the UN Oceans conference in June 2017.
  • A technical and scientific input from international working groups to help establish the next SPREP Whale and Dolphin Action Plan for 2018-2023

  • Tonga’s announcement of a whale sanctuary in their waters.

    Governmental representatives group photo after signing the Pacific Island Year of the Whale Declaration

Whether these declarations of intentions and recommendations will actually lead to tangible actions in the short term, I could not tell. But I am glad I got the opportunity to witness the very first regional conference on whales in the Pacific Islands, and the celebration of these beautiful creatures and their place in Pacific cultures.

The seamounts are calling and I must go: a humpback’s landscape

Solène Derville, Entropie Lab, Institute of Research for Development, Nouméa, New Caledonia (Ph.D. student under the co-supervision of Dr. Leigh Torres)

The deep ocean is awe-inspiring: vast, mysterious, and complex… I can find many adjectives to describe it, yet the immensity of it prevents me from picturing it in my mind. Landscapes are easy to imagine because we see them all the time, but their hidden ocean counterparts of seascapes with several kilometer-high seamounts and abyssal trenches are hard to visualize.

When I started a PhD on the spatial ecology of humpback whales, a species typically known for its coastal distributions, I never imagined my research would lead me to seamounts. Lesson of the day: you never know where research will lead you… So here is how it happened.

About twenty years ago when my supervisor, Dr Claire Garrigue, started working on humpback whales in New Caledonia, she was told by fishermen that humpbacks were often observed in prime fishing locations, about 170 km south of the mainland. After a little more investigation into this claim, it was discovered that these fishing spots corresponded with two seafloor topographic features: the Antigonia seamount and Torch Bank (Fig. 1), These features rise from the seafloor to depths of 30 m and 60 m respectively and are surrounded by waters about 1500 m deep. This led Dr. Garrigue to implement an ARGOS-satellite tagging program to follow the movements of humpbacks leaving the South Lagoon (one of the main breeding area in New Caledonia, Fig. 1). Sure enough, most of the tagged whales (61%) visited the Antigonia seamount (Fig. 2; Garrigue et al. 2015)⁠.

Map of New Caledonia and our study areas: the South Lagoon and the Southern Seamounts. Light grey lines represent 200m isobaths. Land is shown in black and reefs in grey.
Figure 1: Map of New Caledonia and our study areas: the South Lagoon and the “Southern Seamounts”. Light grey lines represent 200m isobaths. Land is shown in black and reefs in grey.
Figure 2: ARGOS tracking of 34 humpback whales tagged between 2007 and 2012 in the South Lagoon. The Antigonia seamount and Torch Bank are completely covered by tracklines.
Figure 2: ARGOS tracking of 34 humpback whales tagged between 2007 and 2012 in the South Lagoon. The Antigonia seamount and Torch Bank are completely covered by tracklines.

 

Seamounts are defined as “undersea mountains rising at least 100m from the ocean seafloor” (Staudigel et al. 2010). Most of them have a volcanic origin and the majority of them are located in the Pacific Ocean (Wessel 2001). But what is the link between these structures and marine life? The physical and biological mechanisms by which seamounts attract marine wildlife are diverse (for a review see: Pitcher et al. 2008)⁠. In a nutshell, topography of the ocean floor influences water circulation and isolated seabed features such as seamounts affect vertical mixing and create turbulences, consequently resulting in higher productivity.

For instance, have you ever heard of internal waves? Contrary to the surface waves people play in at the beach, internal waves propagate in three dimensions within the water column and can reach heights superior to a 100m! When these waves encounter steep topography, they break, similar to what a “normal” wave would do when reaching shore. This creates complex turbulence, which in turn may attract megafauna such as cetaceans (see com. by Hans van Haren).

The importance of seamounts for cetaceans is often referenced in the literature, however, few studies have tried to quantify this preference (one of which was recently published by our labmate Courtney Hann, see Hann et al. 2016 for details). So what importance do these seamounts serve for humpback whales in New Caledonia? Are they breeding grounds, do they serve as a navigation cue, a resting area, or even a foraging spot (the latter being the less likely hypothesis given that humpback whales have never been observed feeding in tropical waters)?

To answer this question, an expedition to Antigonia was organized in 2008 and about 40 groups of whales were observed in only 7 days! The density of this aggregation, the high occurrence of groups with calves and the consistent singing of males suggested that this area may be associated with breeding or calving behavior. Several other missions followed, confirming the importance of this offshore habitat for humpbacks.

Looking through all this data I was struck by two things: 1) whales were densely aggregated on top of these seamounts but were rarely found in the surrounding area (Fig. 3), and 2) other seamounts with similar characteristics are only a few kilometers from Antigonia, but seem to be rarely visited by tagged whales.

What is so special about these seamounts? Why would energetically depleted females with calves choose to aggregate in these off-shore, densely occupied and unsheltered waters?

 

Figure 3: 3D surface plot of the seabed in the Southern seamount area. Humpback whale groups observed in-situ during the boat-based surveys conducted between 2001 and 2011 are projected at the surface of the seabed: blue points represent groups without calf and white points represent groups with calf. Antigonia and Torch Bank have a clear flat-top shaped which classifies them in the “guyot” seamount type. Most whale groups aggregated on top of these guyots.
Figure 3: 3D surface plot of the seabed in the Southern Seamounts area. Humpback whale groups observed during the boat-based surveys (2001-2011) are projected at the surface of the seabed: blue points represent groups without calf and white points represent groups with calf. Antigonia and Torch Bank have a clear flat-top shaped and are called “guyots” seamounts. Most whale groups aggregated on top of these guyots. For 3D interactive plot: click here.

I will spend the next two months at the GEMM lab in Newport, OR, trying to answer these questions using ocean models developed by New Caledonian local research teams (at IRD and Ifremer). I will be comparing maps of local currents and topography of several seabed features located south of the New Caledonia main island. The oceanographic model used for this study will allow me to analyze a great number of environmental variables (temperature, salinity, vertical mixing, vorticity etc.) through the water column (one layer every 10m, from 0 to 500m deep) and at a very fine spatio-temporal scale (1km and 1day, even 1 hour at specific discrete locations) to better understand humpback whale habitat preferences.

Figure 4: Modeled Sea Surface Temperature for July 15th 2013 (model in progress, based on MARS3D, development by Romain Legendre). A temperature front occurs in the middle of the study area, along the Norfolk ridge. On this image, a cold eddy is forming right on top of the Antigonia seamount.
Figure 4: Modeled Sea Surface Temperature for July 15th 2013 (model in progress, based on MARS3D, development by Romain Le Gendre). A temperature front occurs in the middle of the study area, along the Norfolk ridge. On this image, a cold eddy is forming right on top of the Antigonia seamount.

 

Looking forward to uncovering the mysteries of seamounts and sharing the results in December!

Literature Cited

Garrigue C, Clapham PJ, Geyer Y, Kennedy AS, Zerbini AN (2015) Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific Humpback Whales. R Soc Open Sci

Hann CH, Smith TD, Torres LG (2016) A sperm whale’s perspective: The importance of seasonality and seamount depth. Mar Mammal Sci:1–12

Pitcher TJ, Morato T, Hart PJ, Clark MR, Haggan N, Santos RS (2008) Seamounts: ecology, fisheries & conservation. Oxford, UK: Blackwell Publishing Ltd.

Wessel P (2001) Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. J Geophys Res 106:19431–19441

Staudigel H, Koppers AP, Lavelle JW, Pitcer TJ, Shank TM (2010) Defining the word ‘seamount’. Oceanography 23,20–21.

Looking back on a busy field season

Solène Derville, EnTroPie Lab, Institute of Research for Development, Nouméa, New Caledonia (Ph.D. student under the co-supervision of Dr. Leigh Torres)

After one month and a half in the field, I am now comfortably sitting at my desk in the Institute of Research for Development (IRD) in Nouméa and I am finally finding the time to look back on my first marine mammal field experience.

The New Caledonian South Lagoon is certainly not the worst place on earth to study whales. While some people spend hours trying to spot extremely rare and shy species living in freezing cold polar waters, I have to endure a 25°C temperature, turquoise waters and a study species desperate for attention (series of a dozen breaches are not uncommon). As with all field work, there were ups and downs but following humpback whales during the 2015 breeding season was by far the most exhilarating field experience I’ve ever had.

During the austral winter, humpback whales are thought to travel and stay in different areas of the New Caledonian Economic Exclusive Zone. Using satellite telemetry, several seamounts (e.g. Antigonia), banks (e.g. Torche bank) and shallow areas have been shown to play an important role for breeding and migrating humpback whales (Garrigue et al. In Press). However, as much as we would like to study whales in these areas, offshore field missions are logistically and financially hard to conduct. This is why most of the data on humpback whales in New Caledonian waters have been collected in coastal waters, and more specifically in the South Lagoon. Opération Cétacés, a local NGO, has been studying whales in this area for about two decades and I was lucky to participate in this year’s field season with their experienced team.

The South Lagoon of New Caledonia
The South Lagoon of New Caledonia

The usual day in Prony (the village that we live in during the whale season) usually starts early. We get up at about 5:30, and start by engulfing a bowl of porridge (nicknamed “globi” and considered as a highly exotic dish). By 6:30 everyone is standing in our rigid-hulled inflatable boat, listening to the weather forecast on the radio. After a 15 minute trip across the bay of Prony, two people disembark and climb to a land-based lookout, the N’Doua Cape, where they will spend the day trying to spot humpback whales and guiding the boat towards their location via VHF radio communication. The vessel-based team slowly approaches the whale groups to do photo-identification (using the unique marks on the ventral surface of the tail flukes), biopsy collection, and behavioral activity monitoring. The particular coastal geography of this study area (see previous post: Crossing Latitudes) allows us to uniquely combine land-based and boat-based surveying. These methods increase our encounter rate and allow us to collect more individual-based data. Yet, compared to a standardized boat-based surveys, our survey effort is much more complex to estimate and account for in a spatial distribution model.

This season, the number of whale encounters was particularly high. We spent 31 days at sea and observed a total of 99 groups. Using photo-identification, we documented 113 different individuals, some of which were first observed more than 15 years ago! Biopsy samples were collected from 139 different individuals and we managed to record 4h of songs performed by six different whales. Given that the size of the New Caledonian population is currently thought to be less than 1000 individuals, our sampling is not too bad!

A calf breaching out of the water on a late afternoon. No wonder humpback whales are favored by whale-watching companies, they can be very active at the surface!
A calf breaching out of the water on a late afternoon. No wonder humpback whales are favored by whale-watching companies, they can be very active at the surface!
These two adult whales were part of a very active competitive group of eight individuals and displayed a peculiar behavior that included gently rolling and rubbing themselves against each other.
These two adult whales were part of a very active competitive group of eight individuals and displayed a peculiar behavior that included gently rolling and rubbing themselves against each other.

Another great achievement of this season was the tagging of two adult humpback whales with ARGOS satellite-tracking devices. It was a thrilling experience to be part of this procedure and witness the level of concentration and experience required to place a tag on a whale. Our two individuals, one a presumed male and the other a female with calf, were respectively baptized Lutèce (the name Romans gave to Paris) and Ovalie (an old fashioned way to call rugby in France). Their tags transmitted for 15 and 20 days respectively, which was not long enough to follow their migration south towards Antarctica. Yet, both whales spent time on seamounts that are known to play an important role for humpback whales in the region. We were very interested in Ovalie’s track (map given below), as she travelled along the Loyalty ridge, a seafloor structure of great interest to us. We suspect that whales could be using this ridge as a navigational aid and/or using shallow areas (seamounts and banks) along the ridge as resting or breeding habitats. The amount of humpback whales present in this area and the eventual role played by oceanic features along the Loyalty ridge will be the subject of my future research.

Raw ARGOS track: Ovalie visiting seamounts south of New Caledonia and then travelling towards the Loyalty ridge (Don’t worry whales didn’t start walking on land since you saw your last National Geographic documentary; the accuracy of the satellite transmitter is to blame. For some of these points accuracy simply can’t be estimated –classes A and B- and unrealistic locations will have to be removed before performing analysis. In general, accuracy of ARGOS locations ranges between 250 and 1500m).
Raw ARGOS track: Ovalie visiting seamounts south of New Caledonia and then travelling towards the Loyalty ridge (Don’t worry whales didn’t start walking on land since you saw your last National Geographic documentary; the accuracy of the satellite transmitter is to blame. For some of these points accuracy simply can’t be estimated –classes A and B- and unrealistic locations will have to be removed before performing analysis. In general, accuracy of ARGOS locations ranges between 250 and 1500m).

 

But now that we have all this data, let’s get back to work! As much as I love being in the field, there comes a time when you have to sit in front of your computer and try to make sense of all this information you collected.

And that is where my collaboration with the GEMM Lab comes in! I am looking forward to visiting Newport once again in December and to start shedding a light on the ‘How’s and ‘Why’s of New Caledonian humpback whales’ space use.

Literature cited:

Garrigue, C., Clapham, P. J., Geyer, Y., Kennedy, A. S., & Zerbini, A. N. (In Press). Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific Humpback Whales. Royal Society Open Science.

 

From Oregon to New Caledonia: Crossing latitudes

**GUEST POST** written by Solène Derville from the Institute of Research for Development, Nouméa, New Caledonia. Entropie Lab

Last term I posted about the analysis of Maui dolphin habitat selection I have undergone under Dr Leigh Torres’ supervision at OSU. The results of this work are now compiled in a manuscript which I hope to submit for publication very soon.

Since I last posted on this blog, many things have changed for me: I went back to France at the end of May (with a heavy heart from leaving Newport and my dear lab mates) and I have graduated from the Ecole Normale Supérieure of Lyon and successfully completed my Biology Master’s degree. In September, I will start a PhD on the spatial ecology of Humpback Whales in New Caledonia. I will work at the French ‘Institut de Recherche pour le Développement’ in Nouméa, New Caledonia, under the co-supervision of Dr Claude Payri, Dr Claire Garrigue, Dr Corina Iovan (IRD) and Dr Leigh Torres (GEMM Lab, OSU).

Before telling you a bit more about my project and this summer field season, I would like to introduce the beautiful place where I will be spending the next 3 years. New Caledonia is an archipelago located in the southwest Pacific Ocean, east of Australia. This special overseas French collectivity includes a main island (Grande Terre) and several other islands such as the Loyalty Islands. New Caledonia’s lagoon is the largest in the world and was added to the list of the UNESCO world heritage sites in 2008, because of its exceptional biodiversity including many emblematic species such as humpback whales, dugongs, marine turtles, manta rays…and many others.

).new+caledonia+mapNew Caledonia location in South Pacific Ocean (map: http://springtimeofnations.blogspot.jp

map_of_new-caledonialonelyplanet

Map of the New Caledonian Archipelago (map: http://crosbiew.wordpress.com).

Moreover, the ‘Natural Park of the Coral Sea’ was established very recently by the New Caledonian to protect this biodiversity hotspot. This monumental marine park spans 1.3 million square kilometres and is, to date, the largest protected area on the planet. As the detailed management plan for this park will be progressively established in the coming years, there is a local need for more information about marine mega-fauna space use in order to define key areas for wildlife conservation. Thus, the description of the humpback whales ecological niche in New Caledonian waters is the next logical step to initiate conservation planning. The effect of human activities needs to be investigated as the New Caledonian humpback whales population forms an isolated breeding sub-stock and is exposed to mining industry intensification, shipping, harbour construction and boat recreation associated to tourism development.

The general aim of my project is to investigate how humpback whales are using their habitat within and between reproductive areas of Oceania in order to facilitate their conservation at the scale of giant marine reserves (new generation of marine protected areas over vast surfaces exceeding hundreds of thousands of square kilometres). I will therefore focus on the spatial ecology of humpback whales in the New Caledonian Exclusive Economic Zone, with several specific aims:

1/ to quantify the spatio-temporal patterns and dynamics of humpback whale distribution in New Caledonian waters in order to identify key areas for the species and determine if these areas change over time or depending on social context.

2/ to assess the connectivity and movement patterns between areas of interest at individual scale.

3/ to document humpback whale use of habitat in relation to environmental factors and include these results in the broader-context of the South Pacific Ocean breeding areas.

4/ to provide a spatial and temporal assessment of the anthropogenic activities risks to humpback whales in New Caledonia.

I will rely on a large amount of data collected between 1991 and present, and provided by Opération Cétacés (an NGO involved in scientific research on humpback whales and other marine mammals in Oceania since 1996), including boat-based, land-based and aerial observations, satellite tracking and individual-based information (via Photo-Identification and genotyping).

This year, I am taking part in the summer field mission undergone by Opération Cétacés in the South Lagoon. I am currently living in Prony, a little village located along the southern coast of Grande Terre. No electricity, no internet, whale watching from 7am to 4pm on a daily basis: the real life!

In my next post I will tell you a bit more about this field trip with Opération Cétacés but for now, I will let you enjoy these few pictures!

IMG_3813

Prony Bay (© S. Derville)

IMG_3739

Rémi, Claire and Daisy standing next to the “Cap N’Dua” lighthouse from which land observations are made. Whales can be spotted up to 20 nautical miles offshore (© S. Derville) 

IMG_3820

View to the East of Cap N’Dua (© S. Derville)

2015-08-09-50D- 083
Breach observed a few days ago in the South Lagoon (© C. Garrigue)

2015-08-13-40D- 126

Inverted peduncle slap (the whale is lying upside down in the water and energetically slapping the surface with its fluke) (© S. Derville).