Inter- and Transdisciplinary Sea Otter Research

By Dominique Kone, Masters Student, Marine Resource Management

As the human population continues to grow, so does our impact on marine environments. In many cases, these problems – such as microplastics, vessel noise, or depleted fisheries – are far too grand for any one person to tackle on their own and it takes a team effort to find adequate solutions. Experts within a single field (e.g. ecology, economics, genetics) have been collaborating to tackle these issues for decades, but there is an increasing interest and recognition of the importance in working with others outside one’s own discipline.

It’s not surprising that most collaborative efforts are between experts from the same field. It’s easier to converse with those with similar vocabulary, we often enjoy learning from our peers, and our thought-processes and problem-solving skills are typically very similar. However, as issues become more complex and stretch across disciplines, the need for interdisciplinary collaboration becomes more and more imperative. As a graduate student studying marine resource management, I’ve learned the great value in conducting interdisciplinary work. Yet, I still have much to learn if I want to continue to help find solutions to the many complex marine issues. Therefore, over the next year, I’ve committed to joining a interdisciplinary team of graduate students, as part of an NSF-funded fellowship program at Oregon State University (OSU), to further investigate a potential sea otter reintroduction to Oregon. Here, I provide a brief overview of the program and my team’s goals for the coming year.

Source: Hakai Magazine.

The fellowship program emphasizes both interdisciplinary and transdisciplinary approaches, so before I explain the program, it’s important to first understand these terms. In short, interdisciplinarity typically relates to experts from different fields analyzing, synthesizing, and coordinating their work as a whole (Choi & Pak 2006). Another way to think about this, in more practical terms, is if two or more experts share information and learn from one another; each expert can then individually apply that information or lessons-learned to their own line of work. In contrast, transdisciplinary work is slightly more collaborative, where experts work more hand-in-hand to develop a product or solution that transcends their disciplines’ traditional boundaries. The experts essentially create a product that would not have been possible working in isolation. In practice, the product(s) that stems from inter- and transdisciplinary work – if they truly are inter- or transdisciplinary by definition – is potentially very different.

Source: Dr. Shoshanah Jacobs.

With an increasing interest in interdisciplinary work, the National Science Foundation (NSF) developed the National Research Traineeship (NRT) program to encourage select universities to develop and implement innovative and transformative models for training graduate students in STEM disciplines. After soliciting proposals, the NSF awarded OSU one of these NRT projects to support OSU’s Risk and Uncertainty Quantification in Marine Science NRT Program. OSU’s NRT program was born out of the recognition that much of the complexity of marine issues is largely due to the uncertainty of natural and human systems. Therefore, the primary purpose of this program is to train the next generation of natural resource scientists and managers to be better equipped to study and manage complex marine systems, especially under extreme uncertainty and potential risk.

Source: Oregon State University.

This NRT program trains graduate students in three core concept areas: coupled natural human systems, big data, and risk and uncertainty analyses and communications. To learn these core concepts, students fulfil a minor that includes coursework in statistical inference, uncertainty quantification, risk analyses, earth system science, and social systems. In addition to the minor, students also conduct collaborative research in small (3-5 students) cross-disciplinary teams to address specific issues in marine resource management. Within each team, students come from different disciplines and fields, and must learn to work together to produce a transdisciplinary research product. Throughout the year, each team will develop a set of research questions to address their issue at hand, conduct research which links all their fields, and produce a transdisciplinary report summarizing the process they undertook and the end product. Most students who are accepted into the NRT program are awarded one-year fellowships, funded by the NSF.

At the start of this academic year, I was awarded one of these NRT fellowships to address the many issues and implications of a potential sea otter reintroduction to Oregon. Over the next year, I will be working with two other OSU graduate students with backgrounds in genetics and social sciences. Our task is to not only investigate the ecological implications – which I am currently doing for my own thesis – but we are to expand this investigation to also address many of the genetic, political, and social factors, as well. While each of us is capable of addressing one of these factors individually, the real test will be in finding linkages between each of our disciplines to make this project truly transdisciplinary.

Structure and vision of OSU’s NRT program. Source: Oregon State University.

Since our project started, we have worked to better understand each another’s expertise, interests, and the general need for a transdisciplinary project of this sort. After acquiring this base understanding, we spent a considerable amount of time developing research questions and potential methods for addressing our issue. Throughout this process, it’s already become apparent that each of us is starting to learn important teamwork and collaboration skills, including effective communication and explanation of complicated concepts, active listening, critical thinking, and constructive feedback.  While these skills are imperative for our research over the next year, they are also life-long skills that we’ll continue to use in our careers beyond graduate school.

As I’ve stated previously, learning to be an effective collaborator is extremely important to me. Getting the opportunity to work interdisciplinarily is what attracted me to my thesis, the marine resource management program, and the NRT program. By choosing to take my graduate education down this path, I’ve been fortunate to obtain important skills in collaboration, as well as work on a project that allows me to tackle real-world issues and creatively develop scientifically-based solutions. I have high hopes for this NRT project, and I’m excited to continue to conduct meaningful and targeted research over the next year with my new team.

2018-19 OSU NRT Cohort. Source: Oregon State University.

References:

Choi, B. C., and A. W. Pak. Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, service, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine. 29(6): 351-64.

Biopsy sampling blue whales in New Zealand

By: Callum Lilley

Senior Ranger, Marine – Department of Conservation, Taranaki, New Zealand

During the end of January, I had the privilege to be part of the research team studying blue whales in the South Taranaki Bight, New Zealand.  My role, along with assisting with visual survey, was to obtain biopsy samples from whales using a Paxarm modified veterinary rifle.   This device fires a plastic dart fitted with a sterilized metal tip that takes a small skin and blubber sample for genetic and stable isotope analysis. This process is very carefully managed following procedures to ensure that the whales are not put under any undue stress.  Biopsy sampling provides a gold mine of genetic and dietary information to help us understand the dynamics of this whale population.

Although firing a dart at a creature that is considerably larger than a city bus sounds reasonably easy, it is rarely the case.  The first challenge is to find whales within a large expanse of ocean.  The team then needs to photograph the side of each animal and take note of any distinctive features so that each individual is only sampled once.  Sometimes other work will be undertaken (such as collecting fecal samples, or deploying a drifting hydrophone or unmanned aerial system/drone).  Finally the team will attempt to get close enough to the whales, while taking care not to unduly disturb them, to get a biopsy sample.  Wind, vessel movement, glare, the length of time whales spend underwater and the small target they sometimes present above the water are further challenges.

The video below shows a successful biopsy attempt.  It is a well-coordinated team effort that relies on great communication. You can hear observer Todd Chandler direct the skipper of the vessel Ikatere into position while keeping me (the biopsy sampler) informed as to which whale is surfacing and where.  From the vantage point of the flying bridge, Todd can see the whales’ position and movement (my view is limited from the lower deck).  Todd points out where the whale is surfacing and it momentarily presents a target.  This was the second sample from the two racing whales previously discussed by Dr. Torres, so it will be interesting to see their relationship to one-another.

The ideal angle to approach a whale to take a biopsy sample is from behind at a 45 degree angle, as this causes the least disturbance.  The following video was taken from an unmanned aerial system.  It shows the vessel Ikatere approaching from the whale’s left flank. Department of Conservation (DOC) biodiversity ranger Mike Ogle is on the bow of the vessel and fires a biopsy dart at the whale.  After the biopsy is taken the vessel maneuvers to collect the dart/sample from the water while the whale continues to travel.

In addition to blue whale samples, the DOC permit issued to Oregon State University also allowed for opportunistic sampling of other whales.  The following video was taken during an encounter with a large pod of pilot whales.  The video shows how the lightweight dart bounces off the animal and floats in the water.  Care is taken to communicate its location to the skipper who positions the vessel so it can be retrieved with a net.

Once samples have been retrieved they are handled very carefully to prevent contamination.  The sample is split, with some preserved for genetic analysis and the rest for stable isotope analysis.  Analysis of genetic samples provides information on sex, abundance (through genetic capture-recapture, which is calculated by analyzing the proportion of individuals repeatedly sampled over subsequent seasons), and relationships to other blue whale populations.  Stable isotope analysis provides information on diet.  Also, a portion of all samples will be stored for potential future opportunities such as hormone and fatty acid analysis. It blows me away how much information can be gleaned from these tiny samples!