Science (or the lack thereof) in the Midst of a Government Shutdown

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

In what is the longest government shutdown in the history of the United States, many people are impacted. Speaking from a scientist’s point of view, I acknowledge the scientific community is one of many groups that is being majorly obstructed. Here at the GEMM Laboratory, all of us are feeling the frustrations of the federal government grinding to a halt in different ways. Although our research spans great distances—from Dawn’s work on New Zealand blue whales that utilizes environmental data managed by our federal government, to new projects that cannot get federal permit approvals to state data collection, to many of Leigh’s projects on the Oregon coast of the USA that are funded and collaborate with federal agencies—we all recognize that our science is affected by the shutdown. My research on common bottlenose dolphins is no exception; my academic funding is through the US Department of Defense, my collaborators are NOAA employees who contribute NOAA data; I use publicly-available data for additional variables that are government-maintained; and I am part of a federally-funded public university. Ironically, my previous blog post about the intersection of science and politics seems to have become even more relevant in the past few weeks.

Many graduate students like me are feeling the crunch as federal agencies close their doors and operations. Most people have seen the headlines that allude to such funding-related issues. However, it’s important to understand what the funding in question is actually doing. Whether we see it or not, the daily operations of the United States Federal government helps science progress on a multitude of levels.

Federal research in the United States is critical. Most governmental branches support research with the most well-known agencies for doing so being the National Science Foundation (NSF), the US Department of Agriculture (USDA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration. There are 137 executive agencies in the USA (cei.org). On a finer scale, NSF alone receives approximately 40,000 scientific proposals each year (nsf.gov).

If I play a word association game and I am given the word “science”, my response would be “data”. Data—even absence data—informs science. The largest aggregate of metadata with open resources lives in the centralized website, data.gov, which is maintained by the federal government and is no longer accessible and directs you to this message:Here are a few more examples of science that has stopped in its track from lesser-known research entities operated by the federal government:

Currently, the National Weather Service (NWS) is unable to maintain or improve its advanced weather models. Therefore, in addition to those of us who include weather or climate aspects into our research, forecasters are having less and less information on which to base their weather predictions. Prior to the shutdown, scientists were changing the data format of the Global Forecast System (GFS)—the most advanced mathematical, computer-based weather modeling prediction system in the USA. Unfortunately, the GFS currently does not recognize much of the input data it is receiving. A model is only as good as its input data (as I am sure Dawn can tell you), and currently that means the GFS is very limited. Many NWS models are upgraded January-June to prepare for storm season later in the year. Therefore, there are long-term ramifications for the lack of weather research advancement in terms of global health and safety. (https://www.washingtonpost.com/weather/2019/01/07/national-weather-service-is-open-your-forecast-is-worse-because-shutdown/?noredirect=on&utm_term=.5d4c4c3c1f59)

An example of one output from the GFS model. (Source: weather.gov)

The Food and Drug Administration (FDA)—a federal agency of the Department of Health and Human Services—that is responsible for food safety, has reduced inspections. Because domestic meat and poultry are at the highest risk of contamination, their inspections continue, but by staff who are going without pay, according to the agency’s commissioner, Dr. Scott Gottlieb. Produce, dry foods, and other lower-risk consumables are being minimally-inspected, if at all.  Active research projects investigating food-borne illness that receive federal funding are at a standstill.  Is your stomach doing flips yet? (https://www.nytimes.com/2019/01/09/health/shutdown-fda-food-inspections.html?rref=collection%2Ftimestopic%2FFood%20and%20Drug%20Administration&action=click&contentCollection=timestopics&region=stream&module=stream_unit&version=latest&contentPlacement=2&pgtype=collection)

An FDA field inspector examines imported gingko nuts–a process that is likely not happening during the shutdown. (Source: FDA.gov)

The National Parks Service (NPS) recently made headlines with the post-shutdown acts of vandalism in the iconic Joshua Tree National Park. What you might not know is that the shutdown has also stopped a 40-year study that monitors how streams are recovering from acid rain. Scientists are barred from entering the park and conducting sampling efforts in remote streams of Shenandoah National Park, Virginia. (http://www.sciencemag.org/news/2019/01/us-government-shutdown-starts-take-bite-out-science)

A map of the sampling sites that have been monitored since the 1980s for the Shenandoah Watershed Study and Virginia Trout Stream Sensitivity Study that cannot be accessed because of the shutdown. (Source: swas.evsc.virginia.edu)

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), better known as the “flying telescope” has halted operations, which will require over a week to bring back online upon funding restoration. SOFIA usually soars into the stratosphere as a tool to study the solar system and collect data that ground-based telescopes cannot. (http://theconversation.com/science-gets-shut-down-right-along-with-the-federal-government-109690)

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) flies over the snowy Sierra Nevada mountains while the telescope gathers information. (Source: NASA/ Jim Ross).

It is important to remember that science happens outside of laboratories and field sites; it happens at meetings and conferences where collaborations with other great minds brainstorm and discover the best solutions to challenging questions. The shutdown has stopped most federal travel. The annual American Meteorological Society Meeting and American Astronomical Society meeting were two of the scientific conferences in the USA that attract federal employees and took place during the shutdown. Conferences like these are crucial opportunities with lasting impacts on science. Think of all the impressive science that could have sparked at those meetings. Instead, many sessions were cancelled, and most major agencies had zero representation (https://spacenews.com/ams-2019-overview/). Topics like lidar data applications—which are used in geospatial research, such as what the GEMM Laboratory uses in some its projects, could not be discussed. The cascade effects of the shutdown prove that science is interconnected and without advancement, everyone’s research suffers.

It should be noted, that early-career scientists are thought to be the most negatively impacted by this shutdown because of financial instability and job security—as well as casting a dark cloud on their futures in science: largely unknown if they can support themselves, their families, and their research. (https://eos.org/articles/federal-government-shutdown-stings-scientists-and-science). Graduate students, young professors, and new professionals are all in feeling the pressure. Our lives are based on our research. When the funds that cover our basic research requirements and human needs do not come through as promised, we naturally become stressed.

An adult and a juvenile common bottlenose dolphin, forage along the San Diego coastline in November 2018. (Source: Alexa Kownacki)

So, yes, funding—or the lack thereof—is hurting many of us. Federally-funded individuals are selling possessions to pay for rent, research projects are at a standstill, and people are at greater health and safety risks. But, also, science, with the hope for bettering the world and answering questions and using higher thinking, is going backwards. Every day without progress puts us two days behind. At first glance, you may not think that my research on bottlenose dolphins is imperative to you or that the implications of the shutdown on this project are important. But, consider this: my study aims to quantify contaminants in common bottlenose dolphins that either live in nearshore or offshore waters. Furthermore, I study the short-term and long-term impacts of contaminants and other health markers on dolphin hormone levels. The nearshore common bottlenose dolphin stocks inhabit the highly-populated coastlines that many of us utilize for fishing and recreation. Dolphins are mammals, that respond to stress and environmental hazards, in similar ways to humans. So, those blubber hormone levels and contamination results, might be more connected to your health and livelihood than at first glance. The fact that I cannot download data from ERDDAP, reach my collaborators, or even access my data (that starts in the early 1980s), does impact you. Nearly everyone’s research is connected to each other’s at some level, and that, in turn has lasting impacts on all people—scientists or not. As the shutdown persists, I continue to question how to work through these research hurdles. If anything, it has been a learning experience that I hope will end soon for many reasons—one being: for science.

Fishing with dolphins

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

Hello everybody! I am Leila Lemos, a new member of the GEMM Lab. I am from Rio de Janeiro, Brazil, and moved to Corvallis just 2 months ago where I am now taking classes at OSU. Although I have not yet travelled around Oregon to see my surroundings I am loving the fall colors! We don’t have all of this yellow/orange/red in our Brazilian trees; it’s amazing! The green of the pines also enchanted me. What a beautiful place! However, I confess that I do miss being close to the ocean, so I am looking forward to being based in Newport next year. So, since I cannot see the ocean for now, let’s talk a bit about it and the dynamic cetaceans that live there.

My thesis will explore the impact of ocean noise on the physiology of gray whales, but I have not started my fieldwork yet. So for my first blog post I will discuss a unique interaction between bottlenose dolphins (Tursiops truncatus) and fisherman that occurs in the cities of Laguna, in the state of Santa Catarina, and Tramandaí and Imbé, in the state of Rio Grande so Sul, in southern Brazil. Unlike most relationships between fishermen and marine mammals, this interaction is mutually beneficial and both species appear to seek each other out. There are only three other places in the world where a similar interaction occurs: Mauritania, in the west coast of Africa; Myanmar, in the south coast of Asia; and in the east coast of Australia.

In the southern Brazil, dolphins and artisanal mullet fishermen have adapted their hunting strategies to perform a cooperative foraging strategy. Cast net fisherman wait for the dolphins to arrive and then observe their behavior. Only when a specific aggressive behavior pattern is observed do the fishermen enter the water with their nets. The dolphins move closer to the fishermen and begin rolling movements that trap fish close to the margin. The fishermen wait to throw their cast nets into the water until the dolphins perform specific and vigorous behaviors described by Simões-Lopes et al. (1998):

  • the dolphin shows an arched back;
  • the dolphin exposes its head and hits the surface with the throat;
  • the dolphin moves rapidly, showing just the dorsal fin, producing a whirl;
  • the dolphin slaps its tail against the surface.

 

Fishermen waiting for a signal to throw the cast net in Laguna, Santa Catarina, Brazil. Source: Diário Catarinense, 2013.
Fishermen waiting for a signal to throw the cast net in Laguna, Santa Catarina, Brazil. Source: Notícias UFSC, 2009.
Another shots of fishermen waiting to throw the cast net in Laguna, Santa Catarina, Brazil. Source: Notícias UFSC, 2009.

 

This partnership is mutually beneficial. Dolphins use the disturbance caused by the net to separate the mullet school and trap individual prey. This method allows the dolphins to reduce escapees, capture more prey, and ultimately increase their net energy gain.

For fishermen, this cooperative association leads to greatly increased captures of mullet. The water in the southern coast of Brazil is too murky for the fishermen to see the schools and therefore know where to throw their net. By watching the behavior of the dolphins, the fisherman is able to throw his net at the exact time and location of the passing mullet shoal.

While this symbiotic relationship is remarkable, it is also hereditary in both humans and dolphins. The calves follow their mothers during the foraging events and learn the movements used in this cooperative behavior. Likewise, the fishermen learn their techniques from their relatives through observation. This cross-species interaction has created cultural ties of great socioeconomic value for both humans and dolphins. Furthermore, this unique relationship demonstrates how clever and adaptive both taxa are when it comes to capturing prey. Wouldn’t it be great if more teamwork like this were possible?

 

Here is a video that captures this amazing relationship:

Until next time and thanks for reading!

 

 

Bibliographic References:

Diário Catarinense, 2013. Interação entre golfinhos e pescadores em Laguna chama a atenção de produtores da BBC. Retrieved from http://diariocatarinense.clicrbs.com.br/sc/geral/noticia/2013/05/interacao-entre-golfinhos-e-pescadores-em-laguna-chama-a-atencao-de-produtores-da-bbc-4151948.html

Notícias UFSC, 2009. Especial pesquisa: UFSC estuda pesca cooperativa entre golfinhos e pescadores em Laguna. Retrieved from http://noticias.ufsc.br/2009/08/especial-pesquisa-ufsc-estuda-pesca-cooperativa-entre-golfinhos-e-pescadores-em-laguna/

Simões-Lopes, P.C., Fabián, M.E., Menegheti, J.O., 1998. Dolphin Interactions with the mullet artisanal fishing on southern Brazil: a qualitative and quantitative approach. Revta bras. Zool. 15(3), 709-726.