New steps towards community engagement: introducing high schoolers to the field

By Florence Sullivan, MSc, GEMM Lab Research Assistant

This summer, I had the pleasure of returning to Port Orford to lead another field season of the GEMM Lab’s gray whale foraging ecology research project.  While our goal this summer was to continue gathering data on gray whale habitat use and zooplankton community structure in the Port Orford region, we added in a new and exciting community engagement component: We integrated local high school students into our research efforts in order to engage with the local community to promote interest in the OSU field station and the research taking place in their community. Frequent blog readers will have seen the posts written by this year’s interns (Maggie O’Rourke Liggett, Nathan Malamud, and Quince Nye) as they described how they became interns, their experience doing fieldwork, and some lessons they’ve learned from the project. I am very impressed with the hard work and effort that all three of them put into making this field season a success.  (Getting out of a warm bed, and showing up at the field station at 6am sharp for five weeks straight is no easy feat for high-schoolers or an undergrad student during summer break!)

Quince hard at work scanning the horizon for whale spouts. photo credit: Alexa Kownacki

During the month of August, our team collected the following data on whale distribution and behavior:

  •  Spent 108 hours on the cliff looking for whales
  • Spent 11 hours actively tracking whales with the theodolite
  • Collected 19 whale tracklines
  • Identified 15 individual whales using photo-ID – Two of those whales came back 3 times each, and one of them was a whale nick-named “Buttons” who we had tracked in 2016 as well.

We also collected data on zooplankton – gray whale prey – in the area:

  • Collected 134 GoPro videos of the water column at the 12 kayak sample sites
  • Did approximately 147 zooplankton net tows
  • Collected 64 samples for community analysis to see what species of zooplankton were present
  • Collected 115 samples for energetic analysis to determine how many calories can be derived from each zooplankton
The 2017 field team. From left to right: Tom Calvanese (Field Station Manager), Florence Sullivan (Project Lead), Quince Nye, Maggie O’Rourke-Liggett, and Nathan Malamud. Photo credit: Alexa Kownacki

Since I began this project in 2015, I have been privileged to work with some truly fantastic interns.  Each year, I learned new lessons about how to be an effective mentor, and how to communicate our research goals and project needs more clearly. This year was no exception, and I worked hard to bring some of the things I’ve learned into my project planning.  As the team can tell you, science communication, and the benefits of building good will and strong community relationships were heavily emphasized over the course of the internship.  Everyone was encouraged to use every opportunity to engage with the public, explain our work, and pass on new things they had learned.  Whenever the team encountered other kayakers out on the water, we took the time to share any cool zooplankton samples we gathered that day, and explain the goals of our research.  Maggie and I also took the opportunity to give a pair of evening lectures at Humbug Mountain State Park, which were both well attended by curious campers.

Florence and Maggie give evening lectures at Humbug Mountain State Park

In addition, the team held a successful final community presentation on September 1 at the Port Orford Field Station that 45 people attended!  In the week leading up to the presentation, Quince and Nathan spent many long hours working diligently on the powerpoint presentation, while Maggie put together a video presentation of “the intern experience” (Click here for the video showcased on last week’s blog).  I am incredibly proud of Nathan and Quince, and the clear and confident manner in which they presented their experience to the audience who showed up to support them.  They easily fielded the following questions:

Q: “How do you tell the difference between a whale that is searching or foraging?”

A: When we look at the boundaries of our study site, a foraging whale consistently comes up to breathe in the same spot, while a searching whale covers a lot of distance going back and forth without leaving the general area.

Q: “How do we make sure that this program continues?”

A: Stay curious and support your students as they take on internships, support the field station as it seeks to provide resources, and if possible, donate to funds that raise money for research efforts.

Nathan talks about the plankton results during the final community presentation. photo credit: Alexa Kownacki
The audience during the final community presntation. photo credit: Alexa Kownacki
Quince and Nathan answer questions at the end of the community presentation. photo credit: Alexa Kownacki

When communicating science, it is important to results into context.  In addition to showcasing the possibilities of excellent research with positive community support, and just how much a trio of young people can grow over the course of 6 weeks, this summer has highlighted the value of long term monitoring studies, particularly when studying long-lived animals such as whales. We saw far fewer whales this summer than compared to the two previous years, and the whales spent much less time in the Port Orford area (Table 1). As a scientist, knowing where whales are not (absence data) is just as important as knowing where whales are (presence data), and these marked differences drive our hypotheses! What has changed in the system? What can explain the differences in whale behavior between years?  Does it have to do with food quality or availability?  (This is why we have been gathering all those zooplankton samples.) Does it have to do with other oceanographic factors or human activities?

Table 1. Summary of whale tracking efforts for the three seasons of field work in Port Orford.   Notice how in 2017 we only collected 194 whale location points (theodolite marks). This is about 92% less than in the previous years.

2015 2016 2017
Hours spent watching 72:49 148:30 108
Hours spent tracking 80:39* 82:30 11
Number of individuals 43 50 15
Number of theodolite marks 2483 2414 194

*we often tracked more than one individual simultaneously in 2015

Long term monitoring projects give us a chance to notice differences between years, and ask questions about what are normal fluctuations in the system, and what are abnormal. On top of that, projects like this create the opportunity for additional internships, and to mentor more students in the scientific method of investigation.  There is so much still to be explored in the Port Orford ecosystem, and I truly hope this program is able to continue.  If you are interested in making a monetary contribution to sustain this research and internship program, donations can be accepted here (gemm lab fund) and here (field station fund).

Quince records zooplankon sample weights in the wet lab.
Quince sorts through a zooplankton sample in the wet lab.
Nathan stores zooplankton community analysis samples
Maggie and Nathan out in the kayak
Quince and Maggie in the kayak
Maggie, Florence and Quince enjoy the eclipse!
Quince and Maggie bundle up on the cliff as they watch for whales.
Nathan and Quince organize data on the computer at the end of the day.
Quince and Nathan build sand castles as we wait for the fog to clear before launching the research kayak

This research and  student internships would not have been possible without the generous support from Oregon Sea Grant, the Oregon Coast STEM hub, the Port Orford Field Station, South Coast Tours, partnerships with the Bernard and Chapman labs, the OSU Marine Mammal Institute, and the Geospatial Ecology of Marine Megafauna Lab.

Through the intern’s eyes; a video log of the 2017 gray whale foraging ecology project.

By: Maggie O’Rourke-Liggett, GEMM lab summer intern, Oregon State University

Enjoy this short video showcasing the intern experience from the gray whale foraging ecology project this summer. Check back next week for a recap of our preliminary results.

New Study Looks to Investigate the Potential Reintroduction of Sea Otters to Oregon

By Dominique Kone, Masters Student in Marine Resource Management

As I begin a new chapter as a grad student in the Marine Resource Management program at Oregon State University, the GEMM Lab is also entering into unchartered waters by expanding its focus to a new species outside the lab’s previous research portfolio. This project – which will be the focus of my thesis – will assess the potential reintroduction of sea otters to the Oregon coast through an examination of available habitat and ecological impacts. Before I explain how this project came to fruition, it’s important to understand why sea otter reintroduction to Oregon is relevant, and why this step is important to advance the conservation of these charismatic species.

While exact historical populations are unknown, sea otters were once abundant along the coasts of northern Japan, across Russia and Alaska, and down North America to Baja California, Mexico[1]. In the United States, specifically, sea otters were native to coastal waters along the entire west coast – including Oregon. However, beginning in the 1740’s sea otters were subject to intense and unsustainable hunting pressure from Russian, British, and American entrepreneurs seeking to sell their highly-valuable pelts in the lucrative fur trade[2].  Historical records suggest these hunters did not arrive in Oregon until the 1780’s, but from that point on the sea otter was exploited over the next several decades until the last known Oregon sea otter was killed in 1906 at Otter Rock, OR[3].

Pictured: Sea otter hunters near Coos Bay, OR in 1856. Photo Credit: The Oregon History Project.

After decades of intense pressure, sea otter numbers dropped to critically low levels and were thought to have gone extinct throughout most of their range. Luckily, remnant populations persisted and were later discovered in parts of Alaska, British Columbia, California, and Mexico beginning in the 1910’s. Since then sea otters have been the focus of intense conservation efforts. With the goal of augmenting their recovery, the Alaska Department of Fish and Game lead a series of translocation projects, where groups of sea otters were transported from Alaska to unoccupied habitats in Alaska, British Columbia, Washington, and Oregon (Note: these were not the only sea otter translocations.)1.

Pictured: Sea otters on glacier ice, northern Prince William Sound, Alaska. Photo Credit: Patrick J. Endres/AlaskaPhotoGraphics.com

Fun Fact: For a marine mammal, sea otters have surprisingly little blubber. Luckily, they also have the densest fur of all animals – an estimated 1,000,000 hairs per square inch – that helps to keep them well-insulated from the cold.

Many of these projects are considered successful as sea otter populations grew, and continue to expand today. With a significant exception: sea otters mysteriously disappeared shortly after reintroduction into Oregon waters and the translocation effort failed. Many hypothesized what could have gone wrong – natural mortality, dispersal, conflicts with humans – but few have concrete answers. Aside from occasional reports of strandings and sightings of sea otters in Oregon coastal waters, no resident populations have formed. This is where my thesis project comes in.

Pictured: Cape Arago, OR – one of the unsuccessful translocation sites along the Oregon coast. Photo Credit: TravelOregon.com

With renewed interests from scientists, tribes, and the public, we are now revisiting this idea from a scientific perspective. Over the next two years, we will work to objectively assess the ecological aspects of sea otter reintroduction to Oregon to identify and fill current knowledge gaps, which will help inform decision-making processes by environmental managers. Throughout this process we will give consideration to not just the ecology and biology of sea otters, but the cultural, economic, and political relevance and implications of sea otter reintroduction. Much of this work will involve working with state and federal agencies, tribes, and other scientists to gain their insights and perspectives, which we will use to shape our research questions and analyses.

The process to move forward with bringing sea otters back to Oregon will no doubt take great effort by a lot of people, consultation, patience, and time. To date, we have been reviewing the relevant literature and meeting with local experts on this topic. Through these activities, we have determined the types of questions and information – suitable habitat and potential ecological impacts – of most need to managers. My goal is to conduct a meaningful, applied project as an objective scientist, and by gaining this type of feedback at the outset, I am to help managers make better-informed decisions. I hope my thesis can serve as a critical starting point to ensure a solid foundation that future Oregon-specific sea otter research can build from.

References:

[1] Jameson et al. 1982. History and status of translocated sea otter populations in North America. Wildlife Society Bulletin. (10) 2: 100-107.

[2] The Oregon History Project: Sea Otter. Accessed September 2017. <https://oregonhistoryproject.org/articles/historical-records/sea-otter/#.WamgT7KGPIU>

[3] The Oregon History Project: Otter Hunting. Accessed September 2017. <https://oregonhistoryproject.org/articles/historical-records/otter-hunting/#.Wa2TCLKGPIU>