What it looks like when science meets management decisions

Dr. Leigh Torres
GEMM Lab, OSU, Marine Mammal Institute

It’s often difficult to directly see the application of our research to environmental management decisions. This was not the case for me as I stepped off our research vessel Tuesday morning in Wellington and almost directly (after pausing for a flat white) walked into an environmental court hearing regarding a permit application for iron sands mining in the South Taranaki Bight (STB) of New Zealand (Fig. 1). The previous Thursday, while we surveyed the STB for blue whales, I received a summons from the NZ Environmental Protection Authority (EPA) to appear as an expert witness regarding blue whales in NZ and the potential impacts of the proposed mining activity by Trans-Tasman Resources Ltd. (TTR) on the whales. As I sat down in front of the four members of the EPA Decision Making Committee, with lawyers for and against the mining activity sitting behind me, I was not as prepared as I would have liked – no business clothes, no powerpoint presentation, no practiced summary of evidence. But, I did have new information, fresh perspective, and the best available knowledge of blue whales in NZ. I was there to fill knowledge gaps, and I could do that.

Figure 1. Distribution map of blue whale sightings (through Nov 2016) in the South Taranaki Bight (STB) of New Zealand, color-coded by month. Also identified are the current locations of oil and gas platforms (black flags) and the proposed area for seabed mining (yellow polygon). The green stars denote the location of our hydrophones within the STB that record blue whale vocalizations. The source of the upwelling plume at Kahurangi Point, on the NW tip of the South Island, is also identified.

For over an hour I was questioned on many topics. Here are a few snippets:

Why should the noise impacts from the proposed iron sands mining operation on blue whales be considered when seismic survey activity produces noise 1,000 to 100,000 times louder?

My answer: Seismic survey noise is very loud, but it’s important to note that seismic and mining noises are two different types of sound sources. Seismic surveys noise is an impulsive noise (a loud bang every ~8 seconds), while the mining operation will produce non-impulsive (continuous) sound. Also, the mining operation will likely be continuous for 32 years. Therefore, these two sound sources are hard to compare. It’s like comparing the impacts of listening to pile driving for a month, and listening to a vacuum cleaner for 32 years. What’s important here is to considering the cumulative effects of both these noise sources occurring at the same time: pile driving on top of vacuum cleaner.


How many blue whales have been sighted within 50 km of the proposed mining site?

My answer: Survey effort in the STB has been very skewed because most marine mammal sighting records have come from marine mammal observers aboard seismic survey vessels that primarily work in the western regions of the STB, while the proposed mining site is in the eastern region. So at first glance at a distribution map of blue whale sightings (Fig. 1) we may think that most of the blue whales are found in the western region of the STB, but this is incorrect because we have not accounted for survey effort.

During our past three surveys in the STB we have surveyed closer to the proposed mining site. In 2014 our closest point of survey approach to the mining site was 26 km, and our closest sighting was 63 km away. In 2016, we found no whales north of 40’ 30” in the STB and the closest sighting was 107 km away from the proposed mining site, but this was a different oceanographic year due to El Niño conditions. During this recent survey in 2017, our closest point of survey approach to the proposed mining site was 22 km, and our closest sighting was 29 km, with a total of 9 sightings of 16 blue whales within 50 km of the proposed mining site. With all reported sighting records of blue whales tabulated, there have been 16 sightings of 33 blue whales within 50 km of the proposed mining site. Considering the minimal survey effort in this region, this is actually a relatively high number of blue whale sighting records near the proposed mining site.

Additionally, we have a hydrophone located 18.8 km from the proposed mining site. We have only analyzed the data from January through June 2016 so far, but during this period we have an 89% daily detection rate of blue whale calls.


Why are blue whales in the STB and where else are they found in NZ?

My answer: A  wind-driven upwelling system occurs off Kahurangi Point (Fig. 1) along the NW coast of the South Island. This upwelling brings nutrient rich deep water to the surface where it meets the sunlight causing primary productivity to begin. Currents push these productive plumes of water into the STB and zooplankton, such as krill that is the main prey item of blue whales, aggregate in these productive areas to feed on the phytoplankton. Blue whales spend time in the STB because they depend on the predictability of these large krill aggregations in the STB to feed efficiently.

Sightings of blue whales have been reported in other areas around New Zealand, but nowhere with regular frequency or abundance. There may be other areas where blue whales feed occasionally or regularly in New Zealand waters, but these areas have not been documented yet. We don’t know very much about these newly documented New Zealand blue whales, yet what we do know is that the STB is an important foraging area for these animals.


Questions like these went on and on, and I was probed with many insightful questions. Yet, the question that sticks with me now was asked by the Chair of the Decision Making Committee regarding the last sentence in my submitted evidence where I remarked on the importance of recognizing the innate right of animals to live in their habitat without disturbance. “This sounds like an absolute statement,” claimed the Chair, “like no level of disturbance is tolerable”. I was surprised by the Chair’s focus on this statement over others. I reiterated my opinion that we, as a society, need to recognize the right of all animals to live in undisturbed habitats whenever we consider any new human activity. “That’s why we are all here today”, I explained to the committee, “to recognize and evaluate the potential impacts of TTR’s proposed mining operation on blue whales, and other animals, in the STB”. Undisturbed habitat may not always be achievable, but when we make value-based decisions regarding permitting industrial projects we need to recognize biodiversity’s right to live in uncompromised environments.

I do not envy this Decision Making Committee, as over three weeks they are hearing evidence from all sides on a multitude of topics from environmental, to economic, to cultural impacts of the proposed mining operation. They will be left with the very hard task of balancing all this information and deciding to approve or decline the mining permit, which would be a first in NZ and may open the floodgates of seabed mining in the country. My only hope is that our research on blue whales in NZ over the last five years has filled knowledge gaps, allowing the Decision Making Committee to fully appreciate the importance of the STB habitat to NZ blue whales, and appropriately consider the potential impacts of TTR’s proposed mining activities on this unique population.

A blue whale surfaces in a calm sea in the South Taranaki Bight of New Zealand (Photo L. Torres).

The best field season ever

By Dawn Barlow, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

8:35pm on February 20th found the blue whale team smiling, singing, and dancing on the aft deck of the R/V Star Keys as the light faded and the sky glowed orange and we marked our final waypoint of the 2017 blue whale field season. What preceded was a series of days so near perfect that we had barely dared dream of the like. Sighting after sighting, and our team of scientists and the wonderful Star Keys crew began to work like a well-oiled machine—approach the whale gently and observe its behavior, fly the drone, deploy the CTD and echosounder, approach for photos, launch the small boat, approach for biopsy, leave the whale, re-apply sunscreen, find another whale, repeat. This series of events continued from sunrise until sunset, when the sky and water were painted brilliant colors. The sound of big blue whale breaths broke the silence over the glassy water, and the plumes of exhaled air lit up in the last bits of sunlight, lingering there without even a puff of wind to blow them away.

A blue whale mother and calf surface in front of Farewell Spit in calm conditions as the daylight starts to fade. Photo by Leigh Torres.
The small boat returns to R/V Star Keys after collecting the final biopsy sample of the season. Photo by Dawn Barlow.

Despite coming to New Zealand during the “worst summer ever”, I’m pleased to say that this has been the most fruitful field season the New Zealand blue whale project has had. We covered a total of 1,635 nautical miles and recorded sightings of 68 blue whales, in addition to sightings of killer whales, pilot whales, common dolphins, dusky dolphins, sharks, and many seabirds. Five of our blue whale sightings included calves, reiterating that the South Taranaki Bight appears to be an important area for mother-calf pairs. Callum and Mike (Department of Conservation) collected 23 blue whale biopsy samples, more than twice the number collected last year. Todd flew the drone over 35 whales, observing and documenting behaviors and collecting aerial imagery for photogrammetry. We took 9,742 photos, which will be used to determine how many unique individuals we saw and how many of them have been sighted in previous years.

A blue whale surfaces with R/V Star Keys in the background. Photo taken from the small boat by Leigh Torres.

It is always hard to see a wonderful thing come to an end, and we agreed that we would all happily continue this work for much longer if funding and weather permitted. But as the small skiff returned to the Star Keys with our final biopsy sample and the dancing began, we all agreed that we couldn’t have asked for a better note to end on. There has already been plenty of wishful chatter about future field efforts, but in the meantime we’re still floating from this year’s success. I will certainly have my hands full when I return to Oregon, and in the best possible way. It feels good to have an abundance of data from a project I’m passionate about.

A blue whale comes up for air in a calm sea. Photo by Leigh Torres.

Thank you to Western Work Boats and Captain James “Razzle-Dazzle” Dalzell, Spock, and Jason of the R/V Star Keys for their hard work, patience, and good attitudes. James made it clear at the beginning of the trip that this was to be our best year ever, and it was nothing less. The crew went from never having seen a blue whale before the trip to being experts in maneuvering around whales, oceanographic data collection, and whale poop-scooping. Thank you to Callum Lilley and Mike Ogle from the Department of Conservation for their time, impressive marksmanship, and enthusiasm. And once again thank you to all of our colleagues, funders, and supporters—this project is made possible by collaboration. Now that we’ve wrapped up, blue whale team members are heading in different directions for the time being. We’ll be dreaming of blue whales for weeks to come, and looking forward to the next time our paths cross.

Blue whale team members in front of R/V Star Keys in port in Nelson.
The team rejoices after a magnificent final survey day!


A day in the office

Join us for a couple boat rides as we study blue whales in the South Taranaki Bight of New Zealand.

In both videos below you can see and hear the field team coordinate to capture photo-identification images of the whale(s) while also obtaining a small tissue biopsy sample. It is important to match the individual whale to the sample so we can link biological data obtained from the sample (genetics, hormones, stable isotopes) to the individual whale. We also carefully take notes on where, when and what we collect in order to help us keep track of our data.

In this video clip you can watch as we gently approach two blues surfacing off the starboard bow of the RV Star Keys in order to capture photo-identification images and a small tissue biopsy sample. Callum Lilley (DOC) on the bow; Leigh Torres, Dawn Barlow, and Todd Chandler (OSU) photographing and coordinating from the flying bridge.


We are in the small boat here collecting data on a pair of blue whales. Callum Lilley (DOC) is on the rifle; Leigh Torres (OSU) is on the camera and taking notes; Todd Chandler (OSU) is on the helm.


Keeping up with blue whales in a dynamic environment

By Dawn Barlow, MSc student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

“The marine environment is patchy and dynamic”. This is a phrase I have heard, read, and written repeatedly in my studies of marine ecology, and it has become increasingly tangible during the past several weeks of fieldwork. The presence of the blue whales we’ve come here to study is the culmination of a chain of events that begins with the wind. As we huddle up at anchor or in port while the winds blow through the South Taranaki Bight, the water gets mixed and our satellite images show blooms of little phytoplankton lifeforms. These little phytoplankton provide food for the krill, the main prey item of far larger animals—blue whales. And in this dynamic environment, nothing stays the same for long. As the winds change, aggregations of phytoplankton, krill and whales shift.

When you spend hours and hours scanning for blue whales, you also grow intimately familiar with everything that could possibly look like a blue whale but is not. Teasers include whitecaps, little clouds on the horizon, albatrosses changing flight direction, streaks on your sunglasses, and floating logs. Let me tell you, if we came here to study logs we would have quite the comprehensive dataset! We have had a few days of long hours with good weather conditions and no whales, and it is difficult not to be frustrated at those times—we came here to find whales. But the whale-less days prompt musings of what drives blue whale distribution, foraging energetics, and dreams of elaborate future studies and analyses, along with a whole lot of wishing for whales. Because, let’s admit it, presence data is just more fun to collect.

The view from the flying bridge of R/V Star Keys of Mt. Taranaki and a calm sea with no whales in sight. Photo by D. Barlow.

But we’ve also had survey days filled with so many whales that I can barely keep track of all of them. When as soon as we begin to head in the direction of one whale, we spot three more in the immediate area. Excited shouts of “UP!! Two o’clock at 300 meters!” “What are your frame numbers for your right side photos?” “Let’s come 25 degrees to port” “UUUPPP!! Off the bow!” “POOOOOOP! Grab the net!!” fill the flying bridge as the team springs into action. We’ve now spotted 40 blue whales, collected 8 biopsy samples, 8 fecal samples, flown the drone over 9 whales, and taken 4,651 photographs. And we still have more survey days ahead of us!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In Leigh’s most recent blog post she described our multi-faceted fieldwork here in the South Taranaki Bight. Having a small inflatable skiff has allowed for close approaches to the whales for photo-identification and biopsy sample collection while our larger research vessel collects important oceanographic data concurrently. I’ve been reading numerous papers linking the distribution of large marine animals such as whales with oceanographic features such as fronts, temperature, and primary productivity. In one particular sighting, the R/V Star Keys idled in the midst of a group of ~13 blue whales, and I could see foamy lines on the surface where water masses met and mixed. The whales were diving deep—flukes the size of a mid-sized car gracefully lifting out of the water. I looked at the screen of the echosounder as it pinged away, bouncing off a dense layer of krill (blue whale prey) just above the seafloor at around 100 meters water depth.  As I took in the scene from the flying bridge, I could picture these big whales diving down to that krill layer and lunge feeding, gorging themselves in these cool, productive waters. It is all mostly speculative at this point and lots of data analysis time remains, but ideas are cultivated and validated when you experience your data firsthand.

A blue whale shows its fluke as it dives deep in an area with abundant krill deep in the water column. Photo by L. Torres.

The days filled with whales make the days without whales worthwhile and valuable. To emphasize the dynamic nature of the environment we study, when we returned to an area in which we had seen heaps of whales just 12 hours before, we only found glassy smooth water and no whales whatsoever. Changing our trajectory, we came across nothing for the first half of the day and then one pair of whales after another. Some traveling, some feeding, and two mother-calf pairs.

The dynamic nature of the marine environment and the high mobility of our study species is what makes this work challenging, frustrating, exciting, and fascinating. Now we’re ready to take advantage of our next weather window to continue our survey effort and build our ever-growing dataset. I relish the wind-swept, sunburnt days of scanning and musing, and I also look forward to settling down with all of these data to try my best to compile all of the pieces of this blue whale puzzle. And I know that when I find myself behind a computer screen processing and analyzing photos, survey effort, drone footage, and oceanographic data I will be imagining the blue waters of the South Taranaki Bight, the excitement of seeing the water glow brilliantly just before a whale surfaces off our bow, and whale-filled survey days that end only when the sun sets over the water.

A big moon rises to the east and a bright oil rig on the horizon at the end of a long and fruitful survey day. Photo by L. Torres.
And to the west of the moon and the rig, the sun sets over the South Taranaki Bight. Photo by L. Torres.


I love it when a plan comes together

By Dr. Leigh Torres


After four full-on days at sea covering 873 nautical miles, we are back in port as the winds begin to howl again and I now sip my coffee with a much appreciated still horizon. Our dedicated team worked the available weather windows hard and it paid off with more great absence data and excellent presence data too: blue whales, killer whales, common dolphins, and happily swimming pilot whales not headed to nearby Farewell Spit where a sad, massive stranding has occurred. It has been an exhausting, exhilarating, frustrating, exciting, and fulfilling time. As I reflect on all this work and reward, I can’t help but feel gratified for our persistent and focused planning that made it happen successfully. So, as we clean-up, organize data, process samples, and sit in port for a few days I would like to share some of our highlights over the past four days. I hope you enjoy them as much as we did.

The team in action on the RV Star Keys. Callum Lilley (DOC) on the bow waiting for a biopsy opportunity, Dawn Barlow (OSU) on the radio communicating with the small boat, Kristin Hodge (Cornell) taking photos of whales, Captain James Dalzell (Western Work Boats) on the helm, and Chief Engineer Spock (Western Work Boats) keeping his eyes peeled for a blow. (Photo credit: L. Torres)


In the small boat off looking for whales in a lovely flat, calm sea with an oil rig in the background. (Photo credit: D. Barlow)


Small boat action with Todd Chandler (OSU) at the helm, Leigh Torres (OSU) on the camera getting photo-id images, and Callum Lilley (DOC) taking the biopsy shot, and the dart is visible flying toward the whale in the black circle. (Photo credit: D. Barlow)


The stars of the show: blue whales. A photograph captured from the small boat of one animal fluking up to dive down as another whale surfaces close by. (Photo credit: L. Torres)


Collecting oceanographic data: Spock and Jason (Western Work Boats) deploy the CTD from the Star Keys. The CTD is an instrument that measures temperature, salinity, fluorescence and depth continuously as it descends to the bottom and back up again. (Photo credit: L. Torres)


The recently manufactured transducer pole in the water off the RV Star Keys (left) deployed with the echosounder to collect prey availability data, including this image (right) of krill swarms near feeding blue whales. (Photo credit: L. Torres)


The small boat returns to the Star Keys loaded with data and samples, including a large fecal sample in the net: The pooper scooper Leigh Torres (OSU), the biopsy rifle expert Callum Lilley (DOC), and the boat operator Todd Chandler (OSU). (Photo credit: D. Barlow)


Drone operator and videographer, Todd Chandler (OSU) under the towel (crucial piece of gear) to minimize glare on the screen as he locates and records blue whales. (Photo credit: K. Hodge)


A still shot captured from the drone footage of two adult blue whales surfacing in close proximity. (Photo credit: T. Chandler)


The team in action looking for blue whales in ideal survey conditions with Mt. Taranaki in the background. Todd Chandler (OSU) enters survey data while Dawn Barlow (OSU) spies for whale blows. (Photo credit: L. Torres)


A late evening at-sea after a big day sees Callum Lilley (DOC) processing a blue whale biopsy sample for transport, storage and analysis. (Photo credit: K. Hodge)


And we can’t forget why so many have put time, money and effort into this project: These blue whales are feeding and living within a space exploited by humans for multiple purposes, so we must ensure minimal impacts to these whales and their sustained health. (Photo credit: D. Barlow)

The worst summer ever!

By Dr. Leigh Torres

Geospatial Ecology of Marine Megafauna Lab

“This is the worst summer ever in New Zealand.” During our four days of prep in Wellington before heading off on our vessel, almost all my friends and colleagues I spoke to said this statement (often with added emphasis). It’s been cold and windy here all summer long, and when the weather has cleared it has brought only brief respite. These comments don’t bode well for our blue whale survey dependent on calm survey conditions, but February is typically the prime month for good weather in New Zealand so I’m holding out hope. And this unpredictable weather is the common denominator of all field work. Despite months (years?) of preparation, with minute attention to all sort of details (e.g., poop net handle length, bag size limits, length of deployment lines), one of the most important factors to success is something we have absolutely no control over: the weather.

After just one day on the water, I can see that the oceanographic conditions this year are nothing like the hot-water El Niño conditions we experienced last summer. Surface water temperatures today ranged between 12.8 and 13.6 ⁰C. These temps are 10 degrees (Celsius) cooler than the 22 ⁰C water we often surveyed last summer. 10 degrees! Additionally, the current windy conditions have stirred up the upper portion of the ocean water column causing the productive mixed layer to be much deeper (therefore larger) than last year. While Kiwis may complain about the ‘terrible’ weather this summer, the resulting cold and productive oceanographic conditions are likely preferable for the whales. But where are the whales and can we find them with all this wind?

Today we had a pocket of calm conditions so our dedicated research team and crew hit it with enthusiasm, and collected a whole lot of great absence data. “Absence data?” you may ask. Absence data is all the information about where the whales are not, and is just as important as presence data (information about where the whales are) because it’s the comparison between the two sets of data (Presence vs Absence) that allows us to describe an animal’s “habitat use patterns”. Today we surveyed a small portion of the South Taranaki Bight for blue whales for about 6 hours, but the only blue animals we saw were little blue penguins and a blue shark (plus fur seals, dolphins, albatrosses, shearwaters, gannets, prions, kahawai, and saury).  But during this survey effort we collected a lot of synoptic environmental data to describe these habitats, including continuous depth and temperature data along our track, nine CTD water column profiles of temperature, salinity and florescence (productivity) from the surface to the seafloor, and continuous prey (zooplankton) availability data with our transducer (echosounder).

So, now that we have absence data, we need presence data. But, the winds are howling again and are predicted to continue for the next few days. As we hunker down in a beautiful protected cove I know the blue whales continue to search this region for dense food patches, unencumbered by human-perceived obstacles of high wind and swell. So, while my Kiwi friends are right – this summer is not like previous years – I also know that it is the effects of these dynamic weather patterns that we have come so far, and worked so hard, to study. Even as my patience wears thin and my frustrations mount, I will continue to wait to pounce on the right weather window to collect our needed presence data (and more absence data too, I’m sure).

Our research team collecting absence data aboard the RV Star Keys: