Top 10 Oregon Native Plants for Pollinators: Week 7

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Farewell-to-Spring!

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 7! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Photo by Jen Hayes.

Plant Facts

  • Scientific Name: Clarkia amoena
  • Life Cycle: Annual
  • Growth Habit: Upright, clumping
  • Bloom Duration: June – September
  • Hardiness Zone: 1-11
  • Special Traits: Drought tolerant, deer resistant
  • When to plant: For best results, direct seed in Fall or early Spring. Seeds can also be sown in containers or cold frames in the winter.

Pollinator Facts

  • Farewell-to-Spring was found to be associated with Megachile brevis, a species of leafcutter bee.
  • Other common bee visitors include long-horned bees of the genus Eucerini and other species of leafcutter bees.
  • Farewell-to-Spring also hosts some butterflies and moths including the White-Lined Sphinx, Pacific Green Sphinx Moth, and Clark’s Day Sphinx Moth.
  • Farewell-to-Spring provides both nectar and pollen to its insect visitors.
  • Although pollen is easily accessed on the protruding stamen, bees must dive into the flower to reach the nectar that is produced beneath the petals. This is because nectar is produced at the base of the ovary, and Farewell-to-Spring has an “inferior ovary” meaning the ovary is positioned below the sepals and petals.

A male bumble bee dives into a Farewell-to-Spring flower to reach its nectar. Photo by Jen Hayes.
Farewell-to-Spring’s nectaries are found beneath the stamen and petals. Photo © Stephanie Hazen.
 some rights reserved

Farewell-to-Spring’s Native Range in Oregon

Farewell-to-Spring is found throughout Western Oregon from the Coast through the Cascades. Oregon is home to 4 subspecies of Clarkia amoena.

Maps and legend acquired from the Oregon Flora Project, with Imagery Sourced from Google. Copyright 2021© TerraMetrics

Farewell-to-Spring as a pollinator plant

Farewell-to-Spring hosts a moderate abundance of bee visitors, but the diversity of bees it hosts is among the highest found in the study! With a long flowering season, Farewell-to-Spring blooms when spring wildflowers are beginning to turn brown. Bloom duration can be lengthened by occasional watering over the summer, although Farewell-to-Spring are drought-tolerant and survive with minimal summer irrigation. This flower is an annual, but will reseed itself readily.

Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.

Abundance Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron’s 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned to categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Diversity Calculations. Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0% = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.


Did you know?

Leaf cutters forage for pollen, nectar, and one more surprising resource: petal clippings! Using their mandibles, the bees cut out a piece of a petal (often in the shape of a crescent), clasp the piece of petal under their abdomens, and fly away to use the petal as building material in their nests. If you keep a mason bee or leafcutter bee house in your yard and grow Farewell-to-Spring, look for nest holes that are plugged with pink petals instead of mud or leaves.

The tips of some of this flower’s petals have been harvested from by leafcutter bees:


Leafcutters in Action

In each of Jen’s two field seasons, she has set a challenge for student technicians: obtain a video of a leafcutter harvesting a piece of petal from Clarkia. Students that win the challenge are rewarded with baked goods!! This past summer, Mallory succeeded in capturing not one, but two videos of leafcutters in action (below). Leafcutters can be particularly difficult to capture on video because they cut the petal pieces very quickly, and often fly even faster! If you have Clarkia growing in your garden, look to see if your flowers bear any crescent-shaped cuts. If they do, you too might be able to spot some special bees flying away with their floral confetti.

Videos by Mallory Mead, summer 2021.

Photos from the field

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

Top 10 Oregon Native Plants for Pollinators: Week 6

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Common Madia (AKA Tarweed)!

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 6! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Photo © Rob Irwin
 some rights reserved

Plant Facts

  • Scientific Name: Madia elegans
  • Life Cycle: Annual
  • Growth Habit: Erect, slender
  • Bloom Duration: July – September
  • Hardiness Zone: 1-11
  • Light requirements: Prefers full sun, will tolerate partial shade.
  • Special Traits: Drought tolerant, deer resistant, seeds valued by birds, adaptable to many soil types and textures.
  • When to plant: Seeds can be sown directly in the fall, or sown in containers or cold frames in the winter. Stratify seeds if growing indoors.

Pollinator Facts

  • Common madia provides both nectar and pollen to its insect visitors and blooms during a period where foraging resources are often scarce (late summer – early fall).
  • Madia was found to be associated with two bee species in Aaron’s research: the Bi-colored Sweat Bee (Agapostemon virescens) and Titus’s Sweat Bee (Lasioglossum titusi)
  • Madia is also the larval host for three moth species: the Spotted Straw Sun Moth (Heliothis phloxiphada), the Small Heliothodes Moth (Heliothodes diminutivus), and an Epiblema moth (Epiblema deverrae)1.

Photo © Chris Cameron
 some rights reserved

Common Madia‘s Native Range in Oregon

Madia elegans is native to most of Western Oregon. Although it's native range does not extend east of the Cascades, it is a hardy annual that may do well in Central- and Eastern- Oregon gardens.

Map acquired from Oregon Flora with imagery sourced from Google.

Common Madia as a pollinator plant

Common Madia is an ideal plant for pollinator gardens due to its long bloom duration and attractiveness to bees, caterpillars, and butterflies. Madia was found to attract both a high abundance and a high diversity of bee visitors, which further speaks to its use as a great pollinator plant! Due to it’s late-summer bloom period, Madia can act as a great source of forage for it’s various visitors when there may not be many other plants flowering in the landscape. Madia flowers, which close at dusk and reopen in the morning, may also come with a fun surprise if you catch them before the sun has finished its ascent: if you’re lucky, you may be able to find male long-horned-bees sleeping in groups within the flowers2.


Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.

Abundance Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron’s 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned to categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Diversity Calculations. Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0% = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.


A syrphid fly visiting a Madia flower. Photo by Signe Danler.

Did you know?

The other common name for Madia, “Tarweed”, comes from its foliage. It’s covered in stiff trichomes (hairs) and stalked glands which emit a tar-like scent. Common Madia is not the only species with this nickname, it applies to plants in the entire genus! For example, Madia glomerata, “Mountain Tarplant”, is a species of Madia native to the Northeast United States.

Common Madia‘s fruits are flattened achenes, which are valued by small mammals and birds as a food source. The achenes were also used by Indigenous groups, including the Pomo, Miwok, and Hupa and as a staple food source3. The fruits were often roasted with hot coals and then ground into flour.

Photos from the field

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

Top 10 Oregon Native Plants for Pollinators: Week 5

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Canada Goldenrod!

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 5! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Photo by iNaturalist user jessdraws.
no rights reserved (CCO).

Plant Facts

  • Scientific Name: Solidago canadensis*
  • Life Cycle: Perennial
  • Growth Habit: Erect, arching
  • Bloom Duration: July-October
  • Hardiness Zone: 3-9
  • Special Traits: Moderately drought tolerant, deer and rabbit resistant
  • Light requirements: Prefers full sun, but tolerates some shade.
  • When to plant: Plant starts in the Spring, or sow seeds directly in the Fall.

Pollinator Facts

  • Canada goldenrod provides both nectar and pollen to its insect visitors.
  • In Aaron’s research, Canada goldenrod was found to be associated with a species of long horned bee, Melisoddes microstictus and bees from the genus Bombus (bumblebees).
  • Other common visitors to Canada goldenrod are Northern Checkerspot butterflies, Field Crescent butterflies, Wavy-Lined moths, and Common Grey moths.
Bumble bee visiting Canada Goldenrod. Photo by Signe Danler

*A Note on Taxonomy

Canada goldenrod is often treated as a complex, or group of species, under the scientific name Solidago canadensis. In western North America, the complex includes S. elongata, S. lepida, and S. altissima. Tall goldenrod, S. altissima, is not native to Oregon, so when we refer to Solidago canadensis in Oregon, this only includes S. lepida “Cascade Canada Goldenrod” and S. elongata “Western Goldenrod”.

Goldenrods (the genus Solidago) are known to be a very difficult plant to identify to species, because they have a great amount of variation in their morphology within even a single species. To avoid any concerns about what species you’re getting when sourcing goldenrod or other native plants, we highly recommend purchasing plants from a local native plant nursery or grower that sources their seeds within your region!

Canada Goldenrod’s Native Range in Oregon

Oregon is home to Solidago lepida "Cascade Canada Goldenrod" and Solidago elongata, "Western Canada Goldenrod". Both of these species are found throughout Oregon, though they were previously thought to be geographically distinct.

Maps and legend acquired from the Oregon Flora Project, with Imagery Sourced from Google.

Canada Goldenrod as a pollinator plant

Canada goldenrod grows in prairies, meadows and riparian areas across Canada and the United States. Great for erosion control, hedgerows and pollinator gardens, Canada goldenrod will fill space with hardy foliage year round and present a showy display of golden flowers in the late summer. The pyramidal inflorescences are lined with tiny composite flowers that brim with nectar and pollen. Goldenrod supports many late season butterflies, moths, bees, beetles and some wasps.

Goldenrod is a wonderful late-flowering plant for pollinators; it hosts a moderate abundance and a high diversity of insect visitors. During its peak bloom, you can often find numerous different insects foraging on goldenrod. We love combining goldenrod with Douglas aster for a beautiful late-season floral display of yellow and purple, though it also compliments shorter annual species as well.

Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.

Abundance and Diversity Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron’s 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned to categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0% = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.

Did you know?

Although this goldenrod is often blamed for people’s late summer allergies, the culprit is in fact ragweed! Ragweed and goldenrod have different pollination styles: ragweed produces masses of airborne pollen in an attempt to reach other ragweed plants by wind. Since goldenrod has evolved with pollinators to carry its pollen in a targeted fashion, goldenrod produces less pollen, very little of which is airborne.

Canada goldenrod has additionally been used as a plant medicine in many cultures; it was used as a substitute for English tea during the American Revolution for its pain-relieving and diuretic effects. Goldenrod flowers are edible and make a colorful garnish that make a beautiful addition to garden salads.

Photos from the field

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

Top 10 Oregon Native Plants for Pollinators: Week 4

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Varileaf Phacelia!

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 4! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Photo by iNaturalist user Leslie Flint.
CC Some rights reserved.

Plant Facts

  • Scientific Name: Phacelia heterophylla
  • Life Cycle: Biennial/ annual, typically grown as an annual in Oregon
  • Growth Habit: Upright, mounding
  • Bloom Duration: April – July
  • Hardiness Zone: 3-7
  • Special Traits: Shade tolerant, drought tolerant
  • Light requirements: Full sun to part shade
  • When to plant: Seeds should be sown in the fall, starts may be planted in the fall or spring after the last chance of frost.

Pollinator Facts

  • Varileaf Phacelia provides both nectar and pollen to its insect visitors.
  • Phacelia was found to be associated with five bee species in Aaron’s research: the obscure bumblebee (Bombus caliginosus), Edward’s long-horned bee (Eucera edwardsii), the fuzzy-horned bumblebee (Bombus mixtus), the confluent miner bee (Panurginus atriceps), and the yellow-faced bumblebee (Bombus vosnesenskii).
  • Phacelia is also a larval host for 4 moths: the Bilobed Looper Moth (Megalographa biloba), the Geranium Plume Moth (Amblyptilia pica), the Orange Tortrix Moth (Argyrotaenia franciscana) and Clepsis fucana1.

Photo by Aaron Anderson

Varileaf Phacelia‘s Native Range in Oregon

Phacelia heterophylla is native to most of the Western United States – From Washington to California, east to Montana and south to New Mexico. It is additionally native to Canada, where it is currently considered “imperiled” by the IUCN red list2.

Varileaf Phacelia's native range covers nearly the entire state of Oregon! It's native habitat includes moist conifer forests, riparian areas, sagebrush, mountain brush, as well as in aspen and fir communities3.
Maps and legend acquired from the Oregon Flora Project, with Imagery Sourced from Google.

Varileaf Phacelia as a pollinator plant

A female long-horned bee (Eucera sp.) searches for some leftover forage on a spent Phacelia heterophylla inflorescence. Photo by Aaron Anderson.

Varileaf Phacelia is the epitome of an underappreciated pollinator plant! This annual with petite white flowers attracts both an abundance and diversity of insect visitors. With stamen that stick out of the corolla, it heavily advertises its nutritious rewards, attracting plenty of busy bees. In fact, it commonly hosted 5 different bee species in Aaron’s field surveys, including three charismatic bumblebee species, one of which is currently listed as “vulnerable” on the IUCN Red List: Bombus caliginosus, the obscure bumblebee4.


Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.

Abundance and Diversity Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron’s 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned to categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0% = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.


In a survey of gardeners conducted by Aaron and the Garden Ecology Lab, Phacelia heterophylla ranked last among 23 native plants scored for their aesthetic appeal. It may appear “weedy” to some gardeners, but as an annual, it could easily be interspersed with more attractive annual face flowers (such as California poppy, meadowfoam, farewell to spring, or baby blue eyes) to create a colorful and nutritious pollinator garden. Varileaf Phacelia is also a great native annual to include in dryland pollinator gardens, considering it is drought tolerant and able to grow in both nutrient poor and rocky soils.

Did you know?

Photo by iNaturalist user jwlipe. CC Some rights reserved.

Varileaf Phacelia also has the common name "Variegate Scorpionweed", and the pictures above can show you exactly why! It's flowers are borne on elongated stems which are tightly curled, similar to a fiddlehead from a fern! The flowers bloom from the base to the apex of the stem, and the "scorpion tail" slowly unravels as the blooms travel up the stem.

Photos from the field

Of all of the plants we highlight in this 10-week series, Varileaf Phacelia is the one plant that Gail regularly says is in great need of it's own public relations (PR) team. The goal of these plant profiles is to share information and photos of these plants that might convince readers to love this plant as much as we (and the bees) do! 

Let us know which plants have caught your eye, or those that may still take some convincing, by leaving a comment below! 🐝

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

Top 10 Oregon Native Plants for Pollinators: Week 3

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Pearly Everlasting!

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 3! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Photo by Patrick Perish

Plant Facts

  • Scientific Name: Anaphalis margaritacea
  • Life Cycle: Perennial
  • Growth Habit: Upright, clumping
  • Bloom Duration: June – October
  • Hardiness Zone: 3-8
  • Special Traits: Drought tolerant, deer resistant
  • Light requirements: Prefers full sun but will grow in partial shade
  • When to plant: Plant starts in the Spring, or sow seeds directly in the Fall.

Pollinator Facts

  • Pearly everlasting was found to be associated with two species of mining bees in Aaron’s research: Andrena cerasifolii, Andrena candida.
  • Other common visitors to Pearly Everlasting are American Lady butterflies, Painted Lady butterflies, Everlasting Tebenna moth, and Sweat bees.
  • Female and male flowers are generally found on separate Pearly Everlasting plants. This means that male plants provide nectar and pollen to insect visitors while female flowers just provide nectar.
Andrena visiting Pearly Everlasting. Photo by Aaron Anderson

Pearly Everlasting’s Native Range in Oregon

Oregon is home to three varieties of Pearly Everlasting whose native ranges extend the Cascade range, Western Oregon and parts of northeastern Oregon.

Maps and legend acquired from the Oregon Flora Project, with Imagery Sourced from Google. Copyright 2021© TerraMetrics

Pearly Everlasting as a pollinator plant

Pearly Everlasting is an herbaceous perennial commonly seen in open meadows, burned areas, rocky flats and along roadsides in dry, sun-exposed soils. Native throughout the United States, except for the Southwest, Pearly everlasting is an excellent nectar resource for pollinators, and is especially attractive to many butterfly and moth species. It makes an important larval host plant for American Lady and Painted Lady Butterflies whose seasonal feeding can leave Pearly Everlasting foliage slightly tattered, but nothing that the plant can’t recover from.

Pearly Everlasting hosts a moderate abundance and a relatively low diversity of insect visitors, but is a key host plant for its associated pollinators.

Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.

Abundance and Diversity Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron’s 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned to categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0% = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.

Did you know?

As a plant that thrives in high light and very dry conditions, Pearly Everlasting is one of the first plants to colonize recently burned forests. When rain comes after a fire-season, Pearly Everlasting sends out rhizomes that allow the plant to spread rapidly across nutrient-rich areas. Similarly in a garden setting, Pearly Everlasting has low moisture and nutrient needs but when heavily watered and fertilized, it can quickly take over.

Established Pearly Everlasting should not be irrigated more than twice per month in the summer months. The white, petal-like bracts of Pearly Everlasting flowers retain a fresh appearance after being dried, so gardeners that allow aboveground growth to dry out in the summer months will be rewarded with dried flowers perfect for floral arrangements.

Photos from the field

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

Top 10 Oregon Native Plants for Pollinators: Week 2

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Oregon Sunshine! ☀️

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 2! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Plant Facts

  • Scientific Name: Eriophyllum lanatum
  • Other names: Common woolly sunflower
  • Life Cycle: Perennial
  • Foliage: grey, woolly lobed leaves
  • Growth Habit: Upright, spreading, “shrubby”; typically 12-14″ in height, may need to be cut back if it becomes too leggy to maintain upright flowers.
  • Bloom Duration: June – September
  • Hardiness Zone: 5-10; can tolerate cold up to -15 F
  • Special Traits: Drought tolerant
  • When to plant: Starts can be planted in the spring or fall, seeds should be sown in the fall.

Pollinator Facts

  • Oregon Sunshine provides both nectar and pollen to its insect visitors.
  • Oregon Sunshine was found to be associated with one species of bee in Aaron’s research: Panurginus atriceps, the black-tipped miner bee.
  • Oregon sunshine is a host plant to 7 moths: the Gernaium Plume Moth, Orange Tortrix Moth, the Lupine Ghost Moth, and three moths without common names: Telethusia ovalis, Phalonidia latipunctata, and Phtheochroa aegrana.
  • Butterflies including orange sulfurs, red admirals, commas, and skippers are also often attracted to Oregon Sunshine.

Oregon Sunshine‘s Native Range in Oregon

Oregon Sunshine commonly grows on both sides of the Cascades as well as through Southern Washington and California, and has at least 6 different varieties present across the state of Oregon (slide 2).

Maps and legend acquired from the Oregon Flora Project, with Imagery Sourced from Google. Copyright 2021© TerraMetrics

Oregon Sunshine as a pollinator plant

Oregon Sunshine is a widespread perennial in the sunflower family (Asteraceae). It provides resources to a great diversity of pollinators, including bees, butterflies, moths, and caterpillars. This native sunflower is a great late summer nectar plant with wide yellow flowers (sometimes up to 2″ across) that allow pollinators easy access to their nectaries!

Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.
Abundance and Diversity Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron's 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned to categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0%  = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.

Did you know?

The white-grey trichomes (the little hairs on the stems and leaves) add a lovely color to gardens and also act as an important adaptation for this drought-tolerant plant. The trichomes help Oregon Sunshine conserve water by both reflecting heat and reducing the amount of air that moves across a leaf’s surface. Though this trait helps Oregon Sunshine endure intense, dry landscapes, it can also explain why it might not do well in the gardens of those with a tendency to “kill with kindness”… this plant does not want a lot of water! It should be watered no more than once a month once established, so over-waterers beware!

Photos from the field

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

Top 10 Oregon Native Plants for Pollinators: Week 1

The Garden Ecology Lab’s Pollinator Plant PR Campaign Presents….. Yarrow!

The Garden Ecology Lab is releasing a series of plant profiles of the top 10 Oregon native plants for pollinators, based on Aaron Anderson’s 2017-2019 field trials of 23 Oregon native plants. We will feature one plant per week for 10 weeks, this is week 1! Profiles will include photos, planting information, and will highlight common pollinators of each plant.

Plant Facts

  • Scientific Name: Achillea millefolium
  • Life Cycle: Perennial
  • Growth Habit: Upright, spreading
  • Bloom Duration: June – October
  • Hardiness Zone: 3-7
  • Special Traits: Drought tolerant, deer resistant
  • When to plant: Starts can be planted in the spring or fall.

Pollinator Facts

  • Yarrow provides both nectar and pollen to its insect visitors.
  • Yarrow was found to be associated with two species of Andrena in Aaron’s research (Andrena cerasifolii, A. candida).
  • Andrena is a genus of early summer mining bees!
  • Other common visitors to yarrow include sweat bees, nomad bees, and butterflies!
  • Yarrow inflorescences provide a great “landing pad” for pollinators- they can rest directly on the plant while they forage.

Yarrow’s Native Range in Oregon

In Oregon, we have our own native variety of yarrow: Achillea millefolium var. occidentalis. 

Western yarrow's native range covers the entire state of Oregon.

Map acquired from USDA Plants Database. Copyright 2014 © ESRI

Yarrow as a pollinator plant

Yarrow is a ubiquitous North American native plant: its range extends from Alaska to Florida and every state and province in between! Though it commonly appears on pollinator planting lists, many people are not convinced that it’s a great bee plant, because it is not typically buzzing with activity like we may see on Goldenrod or Douglas Aster. Instead of hosting an abundance of visitors, yarrow supports a high diversity of insect visitors.

Infographics developed by LeAnn Locher, Aaron Anderson, and Gail Langellotto.
Abundance and Diversity Calculations. Bee abundance was calculated using estimated marginal means of bee visitation to each of our study plants from 5-minute observations conducted from Aaron's 2017-2019 field seasons. Estimated marginal means (EM Means) were assigned categorical values and averaged across years to yield the following categories: 0% = Very Low =EM mean below 0.49; 25% = Low = EM mean of 0.50 to 0.99; 50% = Moderate = EM mean of 1 to 1.49; 75% = High = EM mean of 1.50 to 1.99; and 100% = Very high = EM mean above 2.0.

Bee diversity was based on the total sum of species collected on each of our study plants from 2017 to 2019. A Chao 2 Estimator was used to estimate total expected species richness for each plant; Chao 2 estimates were then used to create categorical values, as follows: 0%  = Very Low = 9.99 or lower; 25% = Low = 10 to 14.99; 50% = Moderate = 15 to 19.99; 75% = High = 20 to 24.99; 100% = Very high = 25 or higher.

Although yarrow doesn’t buzz with activity like some pollinator plants, it’s certainly not a flower to ignore! Yarrow is a hardy and low maintenance perennial that establishes and spreads readily in gardens. It’s a beautiful cut flower and can also be dried to include in longer lasting floral arrangements; its foliage that maintains its aromatic scent even after drying. Yarrow is additionally a wonderful plant medicine that has been used for centuries.

Did you know?

Yarrow has naturally-occurring pink variants! It can vary from pale pink (left), to deeply magenta (right). These plants were started from seeds collected from wild populations of yarrow, so we can be certain it is indeed a natural variation, rather than a true hybrid or cultivar!

Another fun fact: "millefolium" translates to "thousand-leaved", which is a reference to its dissected leaves!

Photos from the field

Tune in next week for the next edition of our Pollinator Plant PR Campaign.

New Lab Member: Nicole Bell

My name is Nicole Bell, and I’m a first-year master’s student in the Garden Ecology Lab. I was born and raised in Oregon, and I’d like to think that part of the reason I’ve ended up in the field of horticulture/entomology is because I was surrounded by bugs and flowering plants growing up. My childhood backyard was filled with plants, bugs, wild bunnies, and raccoons (and our yellow lab, Bella). It was hard not to be fascinated by all the life that’s possible in just one space.

I completed my H.B.S. in Environmental Sciences here at Oregon State University in 2020. I chose to study environmental sciences because when I was entering college, I knew I cared about science and climate change, but I wasn’t sure what exactly I was interested in. It was an overwhelming decision to try and narrow down a field of study when I wasn’t even sure what the options were yet. I’m grateful that the summer before my freshman year of undergrad, my mom encouraged me to get a job… and there was an opening at Dr. Sagili’s Honey Bee Lab in the Horticulture Department. I had never worked or even thought much about bees/pollinators before, let alone considered making pollinators my focus. Long story short, I got the job as an undergraduate worker in the lab, and I learned so much about both lab and field work.

I worked at the Honey Bee Lab for over 4 years. Towards the end of my freshman year, though, I wondered what working with native pollinators would be like. I found a project offered through the URSA Engage program at OSU: studying the impacts of wildfire severity on offspring food provisions for a native bee (the blue orchard mason bee, Osmia lignaria) at the Forest Animal Ecology Lab in the Forestry Department with Dr. James Rivers. I designed an experiment and wrote my undergraduate thesis about mason bees, and I am grateful for my experience there, as I got to learn about the integration of bees and their environment. When I finished and defended my thesis, I was approaching graduation. I knew I wanted to take some time off school to enjoy reading and learning about topics that interested me outside of a classroom setting.

Who would have thought you could grow up afraid of bugs and then have over 12,000 crawling all over you? Photo taken at the Honey Bee Lab bee beard day in summer of 2018.

Science communication has become a big passion of mine. While most of my undergraduate experience (in the Honey Bee Lab and Forest Animal Ecology Lab) was hard science, either in the field or in the lab, I craved combining my passion for writing with my interest in expressing the implications of science to the public. My mom found a job posting (again… thanks mom!) for an agricultural science writing position at Washington State University, specifically the Center for Sustaining Agriculture and Natural Resources (CSANR). I worked with an amazingly supportive and intelligent group of scientists: they gave me publications to write blog posts about, and they helped me to edit the pieces into works I am proud of. The collaboration that the team members at CSANR have is inspiring and only bolstered my interest in communication and teamwork. While none of my articles on AgClimate were specific to pollinators, the knowledge I gained about agriculture in general and how to put together a synthesized blog post about a complex study was invaluable.

I met with several different potential graduate advisors, and I was amazed with Dr. Gail Langellotto’s knowledge and passion for native pollinators and their urban habitats. Dr. Langellotto also had projects that piqued my interests and would allow me to curate a thesis that blends science and communication. While I’m just now beginning work on the methods for my thesis, I’ll be conducting a comprehensive literature review on bee communities in urban and community gardens. Additionally, I will create an iNaturalist guide on native bees in the Portland, Oregon, area.

One of my favorite things about native pollinators is just how many species are out there. I feel like I haven’t even scratched the surface with my current knowledge about these ecosystems and how they function, so I couldn’t be more excited to learn from other members of the lab and from my research.

What I love most about bugs, bees, and insects alike may be this: there’s a whole world underneath us and above us that we can so easily miss if we don’t look for it.

2021 Butterfly Bush Update

Field season wrap up is underway in the butterfly bush plot, and there is so much to reflect on this year!  The team has had a very productive summer, and as these bushes are better established and have reached their full spread and height, they have become more attractive to pollinators.  As a reminder, the butterfly bush (Buddleja spp.) test plot consists of 34 butterfly bush cultivars of ranging fertility, habit, and breeding complexity.  We have 6 -9 replicates of each individual cultivar, totaling 222 plants in the complete replicated block. The plot represents all the past and present (yes, we have some experimental cultivars) breeding that has been conducted to reduce fertility and hopefully invasiveness of Buddleja davidii.  Much of that breeding centers around interspecific hybridization (breeding between 2 or more species in the same genus), so our plot represents hybridization of 7 different Buddleja species!

This summer we conducted pollinator observations the same as last year.  This consisted of 5-minute timed counts at each location in full flower (we are calling full flower 50% or more of the buds or flowers on the individual plant are fully open) each week.  During the timed count, we identify all visitors to morphology- which is simply differentiating between honeybees, bumblebees, butterflies, and other morphotypes.  This presented new challenges this year because of the sheer mass some of our plants have reached!  Though they were spaced 8 feet apart on all sides at planting, some have grown in together, making access an occasional issue.  Many of the full-sized cultivars also reach well over my head, presenting more challenges in accurate counting.  The team pushed through these difficulties, and by the end of the season we had counted 7,597 individual visitations on the plot.  This is over 2,000 more than last year!  You can view overall visitations by cultivar for both the 2020 and 2021 seasons below.

Though all the cultivars were most frequently visited by honeybee cultivars in 2020, three cultivars in 2021 were most frequently visited by bumblebees.  Most notably the cultivar ‘Honeycomb’ attracted far and away more bumblebees than any other cultivar, and most of the visitors were male.  Not only does ‘Honeycomb’ seem to be very attractive while sampling, it has an extremely long bloom season in comparison to the other cultivars in the study.  It will bloom steadily from mid-June until the first deep frost of the season.  Generally, there is an uptick in visitation across all the cultivars in 2021 as compared to 2020.  Keep in mind the plants were substantially larger this season compared to last, meaning larger floral displays which are more attractive to pollinators.

‘Honeycomb’ in full bloom…on October 29th, 2021

In addition to pollinator observations, we collected nectar volume data for all 34 cultivars and attempted to collect pollen from a low and high fertility cultivar respectively.   Tyler and Mallory were instrumental in getting nectar volume estimates collected, you can see them pictured below probing individual flowers with microcapillary tubes.  Pollen collection turned out to be a very time-consuming process because there wasn’t a good alternative to good old hand collection.  After about 80 hours of labor on the project, we were still a ways off of our mark, so we needed to reassess our methodology.  More to report on that next year I’m sure.

Svea Bruslind and Jen Hayes also helped me take filtered photos of all my cultivars this season.  You can read more about Svea’s excellent photography skills in her post ‘A Bee’s Eye View: UV photography and bee vision‘ but I’m sure the photographs she took of my cultivars in ‘Bee Vision’ will prove useful in understanding patterns of attraction out on the plot.  Scroll through the pictures below to see examples of Svea’s work, in order of pollinator attraction in the 2021 field season.

This time of year, focus returns to the relative fertility portion of my study.  This means time in the greenhouse monitoring controlled crosses I made over the summer, sowing seeds from the field and counting respective seedlings.  This robust dataset will allow us to calculate relative fecundity of all our cultivars in both male and female roles, important information in assessing invasive species legislation. 

What’s buzzing in my garden?: A quick guide to garden bee ID.

I have been so grateful for the opportunity to assist Jen Hayes with her nativar research project. For the past year and a half, I have learned so much in the world of plant and pollinator relationships. One of the most valuable things I have learned, which I use every day in my own garden, is how to quickly identify bees. In the field, we observe each flower plot for five minutes and record the different things that visit. Being able to identify a fly from a bee, or a bee from a wasp is very important in order to obtain accurate data. I wanted to share the process we use to quickly identify bees in the field and hopefully answer some questions you may have had about what was buzzing in your garden.

A small black Halictidae bee examining the Douglas aster cultivar, Sauvie Snow. The photo was taken by Tyler Spofford at Oak Creek Center for Urban Horticulture in Corvallis, OR.

            Once the sun has risen and the chill of the morning has left, bees begin their foraging routine. Male bumblebees, out foraging too late, emerge from the layers of Zinnia flowers. Hundreds of bees possibly pass through your garden in a single day, from flower to flower, collecting pollen and nectar. But what are they? Are they native? Are they helpful in the garden? These are all questions I have whenever I see something buzzing on the mint, exploring the flower patch, or pollinating the tomatoes.

            The first things I always look for are the antennae and the number of wings. The flies that are most often confused with bees have short, almost non-existent antennae, whereas bees will have noticeable, segmented antennae. The wings are also something to look: flies only have one pair of wings and bees have two, the forewings and hindwings. Be sure to look closely! There are flies known as hoverflies or syrphid flies that have incredible mimicry adaptations. Look at these two insects on this butterfly bush. Although almost identical, you can see the top insect does not have noticeable antennae. That’s because it is a honey bee mimic!

The bottom insect is a honey bee and the top insect is a syrphid fly that is a mimic of honey bees. The photo was taken by Tyler Sato Spofford at Lewis Brown Horticulture Farm in Corvallis, OR.

            If you have established that it is a bee and not a fly, there are other things to look for to identify the bee to a more specific taxonomic level. The coloration of the bee could help if it is green or red, but there are many bees that have different variations of black and white. What I like to look for next is the pollen baskets, also known as the corbiculae. Megachilidae bees carry the pollen on the underside of their abdomen, like bright yellow furry bellies. Another distinguishing factor for Megachilidae bees is how they fly. The abdomen of the bee will usually curl upwards while in flight. Mellisodes bees carry the pollen on their hind legs but the baskets are dramatically bigger than honeybees or bumbles. We like to think of them as pollen pants! Mellisodes bees are also known as long-horn bees because of their disproportionately long antennae.

A mellisodes collecting pollen. Look at those pollen pants!

            If the bee does not have any special coloration or noticeably different corbiculae, it could be one of many other genera we have in Oregon. Halictidae bees range in size from the tip of a pen to the size of a penny. They are usually black or black and white and are VERY difficult to distinguish in the field. There are details we have to look for in the lab such as the number of “panels” in the wings or if they have one versus two sub-antennal sutures.

The other bees we see while doing research include wasps, honeybees, and bumblebees. There are so many variations of Bombus here in Oregon it is almost like a scavenger hunt. Because of all the color and striping variations, we use the PNW Bumblebee Atlas to help us identify species in the field.