Garden Bee Webinar

In case you missed the webinar on our garden bee research, I’ve embedded the video, below. The entire webinar is about an hour.

And, make sure to mark your calendars for Monday, October 22nd at 11am PST. Aaron Anderson will be presenting a FIRST LOOK webinar on his research on native plant-pollinator associations. Visit the hypertexted link, above, to register for this FREE webinar.

Aaron was sharing some of his latest data with me, just this past week. His data, collected at replicated field plots in Aurora, Oregon, echoes what we’ve seen in home garden sites around Oregon: for native bees, Douglas Aster was a top performer.

Posted in Lab News | Tagged , , | Leave a comment

Pollinator Survey

Lauren Bennett, a Master’s student at OSU, is doing her capstone project on pollinators She has a short survey (10-15 minutes) on pollinators and pollinator plants.

If you could spare a few moments of your time, we would appreciate your participation in this study. More information this study can be accessed, by following the link, below.

http://oregonstate.qualtrics.com/jfe/form/SV_bw2OqokCObh83rv

FYI ~ this study was deemed ‘quality improvement / assessment’ and not ‘scholarly and journalistic’ by the OSU IRB. Thus, we do not need or have IRB oversight for this study.

 

Posted in Beneficial Insects, science | Tagged , , , | Leave a comment

Plant of the Week: Sunflower

This entry is from Lucas Costner, an undergraduate horticulture major at Oregon State University.  It highlights one of the plants that Aaron Anderson is using in his research.

As summer in the Pacific Northwest comes to a close, the sunflower (Helianthus annuus) stands out as a classic garden favorite deserving consideration. These commonly large, tall yellow flowers are a boon to wildlife, provide late summer height and interest in the garden, and have shared an interesting relationship with people wherever we have encountered them. 

While there are many individual species and varieties available on the market today, wild populations can be found across North America, and most boast popularity with insect pollinators and other wildlife, including birds (1, 3). In the field, Aaron is using the wild-type and, while you certainly don’t have to do the same, varieties marked as “pollenless” or double-petaled should be avoided when planting for wildlife (3). Sunflowers seeds are well-known for their attractiveness to birds, but the flowers also provide forage to a diverse suite of insects, including bees, wasps, butterflies, and even beetles (2, 3). Four genera of native bee species (Diadasia, Eucera, Melissodes, and Svastra) host members that are sunflower specialists, and the giant leafcutter bee (Megachile pugnata) has even been studied as a managed pollinator for agricultural production of the crop (3). 

The giant leafcutter bee (Megachile pugnata).  Photo Credit: Thomas Shahan. Oregon Department of Agriculture.

Originally domesticated in eastern North America, the sunflower is the only native seed oil plant (1). Its use among North America’s indigenous peoples is well-documented and varied, having been used for everything from food to dye to medicine (2). The sunflower was introduced to Europe in the 16th century, where it first found its place in gardens, but it wasn’t until the 1800s in Russia that our modern ideas of giant, towering sunflowers came to be (1). This is because early American colonists did not cultivate sunflowers, and the seeds were reintroduced from Russia to the United States in 1893 (2). The Russians bred sunflowers that could produce up to 1000 seeds each for oil production, since the Russian Orthodox Church had forbidden the use of other cooking oils during the Lenten season (1). Therefore, in comparison with many common varieties available, and despite 3,000 years of domestication by indigenous peoples in North America, the wild-type appears quite diminutive (2). 

No matter the variety, gardeners should be aware that sunflowers are annual flowers that will need replanting every spring (although allowing squirrels to do the planting could be a fun experiment). They prefer well-draining soil and can reach rather impressive heights depending on the exact species and type. Additionally, the stems can become woody and may require some work removing at the end of the season. 

Sources cited: 

  1. Simpson, B. B., & Connor, M. (2014). Plants in Our World: Economic Botany (4th ed.). New York, NY: McGraw-Hill Education.
  2. Stevens, M. (2006, June 7). Plant Guide: Annual Sunflower [PDF]. Davis: USDA NRCS National Plant Data Center.
  3. The Xerxes Society. (2011). Attracting Native Pollinators. North Adams, MA: Storey Publishing.
Posted in Native Plants, Plant of the Week | Tagged , , | Leave a comment

Do Gardeners Like the Same Flowers as Bees?

In 2017 and 2018, Aaron and Lucas took weekly counts of bees on their native plant plots. Aaron has summarized the data for 2017 (below) according to bee morpho-type. The morphotype categories are the same general categories that have been used by other researchers: bumblebee, honey bee, green bee, small bee, and big bee. These major bee categories are fairly easy to distinguish from one another in the field. Although, Aaron and I talked quite a bit about whether or not we should combine big bees and small bees into a new category: other bees. When does a small bee become a big bee? We had a general sense that a large Megachile rotundata would be a big bee, and a small Ceratina sp. would be a small bee. But, what about a smaller Megachile species? Is that big bee or a small bee? There is no clear answer.

Aaron and Lucas kept records of big bees vs small bees, as best as they could, but in the end, we might collapse all of that data into an ‘other bee’ category.Aaron recently surveyed gardeners, to ask their opinion on the aesthetics of his study plants. A quick look at the results suggests that gardeners and bees might be attracted to different flowering plants. While Gilia capitata was the most visited plant in Aaron’s study plots, it was ranked 6th most attractive (out of 27 plants) by gardeners. The story gets worse for Madia elegans (2nd with bees, 20th with gardeners), Aster subspicatus (3rd with bees, 14th with gardeners), and Solidago candensis (4th with bees, 23rd with gardeners).

Could it be that bees and gardeners are truly attracted to different types of flowering plants? Or could it be that if gardeners knew about the benefits of these Willamette Valley natives, that they might see a new kind of beauty in these plants?

 

Posted in Native Plants | Tagged , , , | Leave a comment

First Bee List from Native Plant Study

We are so lucky that Lincoln Best has been in Oregon, supporting the work of the Oregon Bee Atlas. Linc was kind enough to take a look at Aaron’s bees, before going back to Canada. Aaron is currently taking a bit of time off, following his wedding this past weekend (Congratulations Aaron and Maura!). In everyone’s absence, I’m chomping at the bit to see what bees were identified from Aaron’s study of Willamette Valley native plants. So ~ for your reading pleasure, here is a preliminary list of bees collected from Aaron’s plant plots.

Aaron and Lucas in the native plant study site. You can see the 1m by 1 m plot in the foreground by Aaron, a second one near Lucas, and a few more in the distance.

A few things to note about this list:

  1. I give no mention of abundance of each bee species. Some specimens were caught many, many times off of a flowering plant species. Others were rare, and only caught once.
  2. This list is not all-inclusive. It’s Labor Day. I’m working. I got excited about the bees, and wanted to share. But, I am not carefully going through every small label.
  3. Some bees were only found on one or two flowering plant species ~ even though Aaron’s plots are all in the same 3 acre field (1X1m plots, with each plot separated from every other plot by 6 m).
  4. Yellow-faced bumblebees were collected off of most plants ~ so I am not listing them, below. I also did not look at the honey-bee plant associations.
  5. Linc dissected male genitalia (yes ~ that is how you need to ID some bees to species), and found FOUR Bombus calignosus (all associated with lavender)~ a vulnerable species on the IUCN Red List.
  6. We also have Bombus fervidus, another species on the IUCN Red List (Vulnerable) on lavender, Salvia, and Gilia.

I’ll leave it to Aaron to make a rigorous accounting of bee-flower associations. But for now . . . on this holiday weekend, I was too excited to not take a peek and share initial findings with all o fyou.

Nepeta (non-native comparitor)

Oregano (non-native comparitor)

Salvia (non-native comparitor)

Lavender (non-native comparitor)

Phacelia (native)

Clarkia (native)

Goldenrod (native)

California Poppy (native)

Doug Aster (native)

Oregon Iris (native)

Gilia capitata (native)

Oregon Sunshine

Madia (native)

Sidalcia (native)

Yarrow (native)

Pearly Everlasting (native)

Posted in Native Plants | Tagged , , , , , | Leave a comment

Plant of the Week: Common Yarrow

This entry is from Lucas Costner, an undergraduate horticulture major at Oregon State University.  It highlights one of the plants that Aaron Anderson is using in his research.

Common Yarrow (Achillea millefolium) isn’t just common — it’s nearly ubiquitous throughout the Pacific Northwest. Found in lawns, along roadsides, in fields and gardens, it’s easy to allow yarrow’s abundance to overshadow its potential in the landscape, its benefit to wildlife, and its historical value as a medicinal plant. 

A perennial native across the temperate Northern Hemisphere, yarrow has a long history of human association (1, 2). Its scientific name, Achillea, comes from the ancient Greek hero Achilles, who used the plant to help dress battle wounds (2). Similarly, in the Northwest, indigenous peoples made poultices and teas from the plant (2). 

In the landscape, it may be helpful for gardeners to consider mimicking natural distribution patterns by massing yarrow into larger groups of plants (3). Yarrow grows densely — emerging up to three feet in height and spreading from a fibrous horizontal root system (1). White, sometimes pink, ray flowers appear at the end of stems in nearly flat inflorescences (2). These plants are very drought tolerant and appear naturally in disturbed areas, meaning they will thrive in the average garden (1). 

As a member of the Asteraceae family along with goldenrod and Douglas aster, yarrow’s bountiful floral display offers excellent forage for generalist pollinator species throughout the summer months and is a common choice for butterfly gardens (1). In addition to its floral resources, the foliage is noted as a source of food and habitat to many species of butterfly and moth caterpillars (4). 

References: 

1. Hurteau, M. D. (2013, November 13). Common Yarrow [PDF]. USDA NRCS National Plant Data Center.

2. Mathews, D. (2016). Natural History of the Pacific Northwest Mountains. Portland, OR: Timber Press.

3. Rainer, T., & West, C. (2015). Planting in a Post Wild World. Portland, OR: Timber Press.

4. Robinson, G. S., P. R. Ackery, I. J. Kitching, G. W. Beccaloni & L. M. Hernández, 2010. HOSTS – A Database of the World’s Lepidopteran Hostplants. Natural History Museum, London. http://www.nhm.ac.uk/hosts. (Accessed: 29 Aug. 2018).

Posted in Native Plants, Plant of the Week | Tagged , | Leave a comment

Upcoming Webinars Feature Garden Ecology Lab Research

If you are interested in hearing more about our research, please consider sitting in on one of the upcoming webinars we are presenting, as part of the Advanced Training Series for Master Gardeners, organized by OSU Extension Faculty Member, Brooke Edmunds. Gail will be speaking on August 30th, about garden bees. Aaron will be speaking on October 22 on his native plant research. There is also a presentation in November by Melodie Putnam (not in our lab group ~ but a great speaker) on plant galls.

Webinars qualify for Master Gardener continuing education units in Oregon. The webinars are free, but you must pre-register. After the presentations, all webinar recordings are posted on Brooke’s YouTube channel.

More details, and link to the registration page, can be found, below.

Thursday 8/30 at 11am PT

The latest research on bees in the garden: an update from the OSU Garden Ecology Lab.

Speaker: Dr. Gail Langellotto (OSU)

 https://learn.extension.org/events/3443

Monday 10/22 at 11am PT

‘First Look’: OSU Research on Native Plants in the PNW Garden

Speaker: Aaron Anderson (OSU graduate student)

https://learn.extension.org/events/3494

Monday 11/19 at 11am PT

The Weird and Wonderful World of Plant Galls

Melodie Putnam (OSU Plant Clinic)

https://learn.extension.org/events/3493

Missed a webinar? 

Catch up with the 2018 series here: https://tinyurl.com/yczwxjvr (opens in YouTube)

Posted in Lab News | Tagged , , , | Leave a comment

Urban Garden Soils Study Update

It has been a busy summer in the Garden Ecology Lab!

  • Mykl Nelson successfully defended his thesis on urban garden soils, and graduated with a M.S. in Horticulture this past June.
  • Gail, Aaron, and Mykl all shared their research results with Master Gardeners, at the recent Growing Gardeners conference.
  • Aaron continues his fieldwork, documenting the attractiveness of several Willamette Valley native plants to pollinators. You can find his full list of plants here.
  • Aaron launched the survey part of his research, to document the attractiveness of these same plants to gardeners. If you would like to participate, you can find our recruitment letter, here.
  • Gail and Isabella continue to sample insects on a monthly basis, from 24 Portland area gardens. Our July sample has been pushed to the week of July 30th, because Gail was invited to serve as a panelist on a USDA grant panel. Sampling takes four long days ~ made all the more difficult by Portland’s heat wave. But, sampling during the heat wave will be interesting. Do garden habitats become even more important to bees, when the heat dries up forage in natural and wild habitats? We shall see.
  • Bees from our 2017 sampling effort have been pinned, labelled, and sent to the American Museum of Natural History for expert identification. Thank you to the Oregon Master Gardener Association for a $500 grant to help pay for the expert bee identification.

Today, I’m packing field supplies and clothes for the July 30-August 2nd garden bee sampling effort. It seemed like a good time to provide an update on our garden soils work. I wrote this article for the Hardy Plant Society of Oregon quarterly magazine. I thought that others who are interested in garden ecology might be interested in seeing an update on this work. We are currently working on a manuscript of Mykl’s research, for submission to the journal Urban Ecosystems. In the meantime, some of the highlights can be found below.

**********************

Despite the popularity of urban agriculture, we know virtually nothing about urban agricultural soils, including residential vegetable gardens. We thus studied urban garden soils to get a sense of the characteristics of residential-scale, urban agricultural soils in western Oregon. Last year, we took soil samples from 27 vegetable gardens in Corvallis and Portland, and tested for differences between garden sites based upon bed-type (e.g. raised beds versus in-ground beds). All gardens were managed by certified Extension Master Gardeners.

If you have taken a Master Gardener soils class, perhaps you have heard the soil management mantra ‘just add organic matter!’. This mantra comes from the idea that adding more organic matter (OM) can improve soil tilth and nutrition. However, this mantra was derived from research in large-scale farming systems, where farmers often struggle to raise their soil OM by even 1%, across tens or hundreds of acres of crop production.

We found that nearly every garden that we sampled had an excess of OM (Table 1). Soil management guidelines suggest that farmers should aim for 3-6% soil OM. Across all of our garden study sites, vegetable garden soils were on average 13% OM, by volume. Raised beds were significantly over-enriched in organic matter (15% OM, on average), compared to in-ground beds (10% OM, on average). To put it another way, Master Gardener-tended vegetable gardens were over-enriched in OM by 2-5 times the recommended level!

This excess in organic matter likely contributed to excessive levels of other soil parameters. For example, most garden study sites were above recommended levels for electrical conductivity (a measure of soil ‘salts’). All gardens were above recommended levels for sulfur (S), phosphorus (P), calcium (Ca), and magnesium (Mg) (Table 1). Only nitrogen (N), potassium (K), and boron (B) were generally within recommended levels (Table 1).

Table 1. Percent of garden study sites that were within, above, and below recommended ranges for various soil parameters. OM: organic matter. EC: electrical conductivity. N: nitrogen. S: sulfur. P: phosphorus. K: potassium. Ca: calcium. Mg: magnesium. B: boron.

Soil Parameter Percent of Garden Study Sites
Within Recommended Range Above Recommended range Below Recommended Range
OM 6% 94% 0%
EC 18% 82% 0%
N 70% 30% 0%
S 0% 100% 0%
P 0% 100% 0%
K 73% 24% 3%
Ca 0% 100% 0%
Mg 0% 100% 0%
B 42% 3% 55%

The excessive organic matter in residential-scale garden soils makes sense, when considered in the context of garden size. In small garden plots, gardeners can easily over-apply products which have been recommended for successful, large-scale, agricultural production. It is easy to imagine that the over-abundance of organic matter in soils results from large amounts of compost added to a relatively small area.

Our results point to the importance of conducting periodic soil tests in garden soils. Instead of ‘just adding organic matter’, gardeners need to understand where they are starting from, before adding amendments and fertilizers to their soil. Apply focused applications of specific nutrients (such as boron or nitrogen) to correct nutrient deficiencies, as needed, while avoiding additions of nutrients that are at relatively high levels. For example, nitrogen is extremely mobile in soils, while phosphorus tends to build up over time. Adding focused applications of synthetic (15-0-0) or organic nitrogen (in the form of feather meal) can help meet crop needs without providing excessive amounts of phosphorus, over time. Gardeners who annually apply organic matter to their soils, without the benefit of a soil test, may be unintentionally adding too much phosphorus to their soils. Soils with excessive micronutrients may hinder plant growth. Soils with excessive phosphorus might contribute to water quality issues in their watershed. Excessive phosphorus also harms or kill beneficial mycorrhizal fungi.

Posted in Lab News, urban soils | Tagged , , , , , | Leave a comment

Master Gardener Input Needed!

We are soliciting Master Gardener feedback on the attractiveness of the native wildflowers that Aaron Anderson is studying for pollinator plantings. More detail on the study can be found at:

http://blogs.oregonstate.edu/gardenecologylab/native-plants-2/

As we mention, not only are we interested in finding plants that support ecosystem services; we also want to find plants that gardeners find attractive, and that they would want.

This is where you come in. If you are willing, please let us know which ones you would like to see in your own garden, based on their looks, alone. Below is the recruitment letter, with further information about participation. Thank you for your consideration!

*******************************************

Study: Screening Willamette Valley Wildflowers for attractiveness to Pollinators and Natural Enemies

Graduate Research Assistant: Aaron Anderson (andeaaro@oregonstate.edu; 503-860-9286)

Principal Investigator: Dr. Gail Langellotto (Gail.Langellotto@oregonstate.edu; 541-737-5175)

Dear Master Gardener,

You are invited to take part in a survey that will generate useful information on the ornamental value of pollinator-friendly native wildflowers.

Previous research has shown that urban greenspaces, notably gardens, can provide excellent habitat for pollinators and other invertebrates. The inclusion of pollinator-friendly plantings in gardens has the potential to improve habitat quality and connectivity in otherwise inhospitable landscapes. However, research on which Willamette Valley wildflowers are best to use for these plantings is lacking. Thus, I am conducting a research project to assess the relative attractiveness of 23 wildflower species native to the Willamette Valley (Oregon) to pollinators and natural enemies. Additionally, I would like to assess the aesthetic value of these plants to identify native flowers that are also attractive for ornamental use in home gardens.

As a Master Gardener, I am asking your help with my study, “Screening Willamette Valley Wildflowers for attractiveness to Pollinators and Natural Enemies”.  If you are aged 18 or older, and are currently a Master Gardener, or have been a Master Gardener in the past, I would appreciate it if you could take 10-15 minutes to respond to this survey:

http://bit.ly/OSUNative

Your survey responses will be recorded as a group. Thus, your response will be anonymous.  If the results of this survey are published, your identity will not be made public. The security and confidentiality of information collected from cannot be guaranteed.  Confidentiality will be kept to the extent permitted by the technology being used.  Information collected online can be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses.

Your participation in this study is voluntary and you may refuse to answer any questions(s) for any reason.  There are a limited number of Master Gardeners in Oregon, so your participation in this study is important. If you do not want to participate and do not wish to be contacted further, do not fill out the online questionnaire. There are no foreseeable risks to you as a participant in this project; nor are there any direct benefits. However, your participation is extremely valued.

If you have any questions about the survey, please contact me at 503-860-9286 or via email at andeaaro@oregonstate.edu.  If you have questions about your rights as a participant in this research project, please contact the Oregon State University Institutional Review Board (IRB) Human Protections Administrator at (541) 737-4933 or by email at IRB@oregonstate.edu.

Thank you for your help. I appreciate your consideration.

Sincerely,

Aaron Anderson

Posted in Native Plants, science | Tagged , , | Leave a comment

First Publication from the Garden Ecology Lab!

Our paper on the potential for bee movements between gardens and urban/peri-urban agriculture has been published in a special issue on Agroecology in the City, in the journal Sustainability.

Langellotto, G.A.; Melathopoulos, A.; Messer, I.; Anderson, A.; McClintock, N.; Costner, L. Garden Pollinators and the Potential for Ecosystem Service Flow to Urban and Peri-Urban Agriculture.Sustainability 2018, 10, 2047.

In this paper, we estimated how far the bees we collected from our Garden Pollinators Study could move between gardens and pollination-dependent cropland. We found that when pollination-dependent crops (commercial-scale or residential-scale) are nearby, 30–50% of the garden bee community could potentially provide pollination services to adjacent crops.

But, we currently know so little about bee movements in complex landscapes ~ if and how bees move across roads or through gardens embedded in housing developments. This question will be a focus of our future work.

Some of the bees collected from our 2017 Garden Pollinators study.

Posted in Beneficial Insects, garden ecology, science | Tagged , | Leave a comment