Robotics researchers in the College of Engineering at Oregon State University are working with colleagues at the University of Washington through a partnership with the Pacific Marine Energy Center to help the Navy develop new technology to expand the abilities of robotic arms mounted on remotely operated vehicles beneath the ocean surface. 

The Office of Naval Research earlier this year awarded a three-year, $3.3 million grant to the University of Washington Applied Physics Lab, of which $2.2 million will go to Oregon State. Geoff Hollinger, associate professor of mechanical engineering and robotics, heads up the Oregon State team. 

ROVs are “unoccupied, highly maneuverable underwater machines that can be used to explore ocean depths while being operated by someone at the water surface,” according to the website of the National Oceanic and Atmospheric Administration. Think of them as remote-controlled submarines. ROV operations eliminate human presence underwater and are thus safer and easier to conduct than operations employing divers or occupied submersibles. 

Initially developed for industrial tasks like pipeline inspection, ROVs have been adapted for a variety of other tasks, many of them scientific and educational. A typical ROV is equipped with cameras and lights at minimum, but they often come loaded with additional instruments, such as probes or robotic arms. ROVs can be as small as a toaster oven or as large as a truck. Whatever their size, they’re controlled remotely by an operator in a surface vessel with a joystick, similar to a video game controller. 

“Our project focuses on moving the role of the operator from one of low-level control to that of providing high-level, explainable goals for subsequent execution by the robotic arm,” Hollinger said. “We’re doing fundamental research on algorithms for robotic control, perception, planning, and decision-support, as well as hardware design, to improve the efficiency and reliability of subsea manipulation of the robotic arm.” 

The researchers, including Oregon State engineers Julie Adams, Joe Davidson, Heather Knight, Fuxin Li, and Kagan Tumer, will work with a robotic arm mounted on a test stand, with the future goal of mounting the arm on remotely operated vehicles while maintaining human-in-the-loop control authority, Hollinger said.

 Keith Hautala

Yue Cao, center, and Ted Brekken, right, affiliated faculty with the Pacific Marine Energy Center, work on rotating machinery in the Wallace Energy Systems and Renewables Facility lab.

Engineering researchers at Oregon State University are collaborating with colleagues at the University of Michigan on a project to convert river and ocean currents into electric current, using reconfigurable, high-efficiency micro-turbines. 

The research is supported by a $3.9 million grant from the Department of Energy’s Advanced Research Projects Agency-Energy, through its SHARKS (Submarine Hydrokinetic And Riverine Kilo-megawatt Systems) program, one of 11 projects announced in November, totaling $35 million.

The Michigan project, dubbed “RAFT: Reconfigurable Array of High-Efficiency Ducted Turbines for Hydrokinetic Energy Harvesting,” bases its approach on an array of micro-turbines with a modularized architecture and reconfigurable units, making it adaptable to different applications and marine environments. 

The RAFT team incorporates experts in hydrodynamics, structural dynamics, control systems, power electronics, grid connections, and performance optimization. Oregon State’s team, led by Yue Cao, assistant professor of electrical and computer engineering, is specifically responsible for the electrical energy conversion subsystem, including hardware and control designs from the generator terminals to the grid connections. Ted Brekken, professor of electrical and computer engineering and co-director of the Wallace Energy Systems and Renewables Facility, will support the effort.

“What’s particularly appealing about this project is that it’s focused on making the technology practical, giving strong consideration to environmental impact and economic viability,” Cao said. “Also, because our team is multidisciplinary, our project will apply concurrent, as opposed to sequential, design methodologies — namely control co-design, as highlighted by the SHARKS program.”

The team will develop new hydrokinetic turbine designs to harvest energy from tidal and riverine currents. The project will significantly reduce the levelized cost of energy, a measure of the average lifetime cost of energy-generating technology per unit of energy generated. 

“Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently cost-prohibitive compared to other sources,” Cao said. “The RAFT concept is a promising candidate to address this barrier by designing new, efficient systems to harness our nation’s tidal, riverine, and ocean resources.” 

Levelized cost reductions will be realized through multiple approaches, Cao says, including increasing generation efficiency, increasing rotor area relative to mass, lowering operation and maintenance costs, reducing impacts on the environment, and improving system reliability.

Keith Hautala

James Matthew Ewing grew up in Lebanon, Oregon, and is a sophomore in electrical engineering. His experiences with research and the OSU Robotics Club have fueled his interest in robotics. He plans to pursue a career in low-power electronics after graduation.

James Ewing is soldering a PCB for a robotic grasping testing device in his garage lab.

As a student from a small high school going into college, finding the path to success seemed like a daunting task. But it is possible! The first step I took was to find what makes me happy, through extracurricular involvement with robotics and undergraduate research.

Through my involvement in the OSU Robotics Club, I found that I have a blast solving engineering problems as part of a team. My journey started when I joined the Mars Rover subteam and took on a project to design printed circuit boards that no one else wanted to. At first, I had no idea how to design a PCB. But after attending OSURC’s technical workshop, I was able to complete the project. The technical skills I learned allowed me to do more than a first-year student who had built their knowledge solely from the course curriculum. 

In the fall of 2020, during the height of the pandemic, I became the president of the robotics club.  This role has allowed me to grow as a leader in an ever-changing environment. The love that OSURC’s members show for robotics is intoxicating. This experience has driven me to become the best leader I can, so I can pass on the love of robotics to others. As president of the club, I have built connections with faculty, industry experts, and other students that will last beyond my tenure as president. I am grateful for the amazing learning experience.

Another large part of finding happiness has come from balancing finances and education. The first step I took was through the Undergraduate Research, Scholarship, and the Arts program. As a first-year student, I took the initiative to apply for the program and was accepted by Professor Cindy Grimm. My project was to create a sensorized, “smart” apple that allowed robotic hand grasping algorithms to collect data on how to pick an apple. After finishing my research project, Professor Grimm hired me as an undergraduate research assistant with flexible hours. As a result, I’m financially stable and still have enough time to get hands on experience and learn the course material. 

Finally, I have been very fortunate to have an amazing group of friends who have had my back throughout my college years. This started with a small group of friends from high school that expanded as I met more amazing people in my electrical engineering classes. I can’t emphasize enough how important having a support group has been for me. Without having my friends there to bounce ideas off of and to remind me about assignments that are due, I don’t believe I would have made it as far as I have.   

What I’ve learned is that success doesn’t happen to people because they are smarter or better. I am definitely not the most intelligent person, but I make up for that by putting in effort into activities outside of my courses. Take my story as evidence that finding balance and building connections will lead to happiness and success in college and beyond.   

James Matthew Ewing

Kai Zeng, a computer science graduate student in the College of Engineering at Oregon State University, brought home first place in the Lucid Programming Competition. Zeng competed among 260 participants from across the western United States in the hackathon. The outer space-themed challenge required contestants to solve 12 mathematic and algorithm problems such as Six Degrees of Neil Armstrong and Antimatter Annihilation.

Although he hadn’t done any algorithmic problem solving for a while, Zeng decided to enter the contest just to brush up on those skills. “I think algorithm skills should be exercised regularly,” he said. “I plan to participate in more programming competitions in the future to continue to improve my thinking and coding abilities.”

Zeng is a master’s degree student with a research focus on distributed systems and machine learning, advised by Associate Professor Lizhong Chen.

“Zeng’s excellent programming skills have helped his research significantly,” said Chen.

Mike JohnnieRecently named director of engineering for the Moog Aircraft Group, Mike Johnnie (’82 B.S., Electrical Engineering) has been flying high in the aerospace industry since he graduated from Oregon State University.

The Moog Aircraft Group primarily develops and supports flight control systems which are integrated into a wide range of commercial and military aircraft.

This involves building the systems that control the actuation of the aircraft — the machinery or systems that control how an aircraft flies. If you have flown in an airplane, you’ve probably observed that there are parts of the wing that move during takeoff and landing; the actuators are the hydraulics or electrical machinery that move these parts. Moog builds the electronics and software that control these actuators as well as the actuators themselves.

At Moog, Johnnie has a busy schedule managing a staff of 500, but still finds time to help his alma mater. He serves as a member of the School of Electrical Engineering and Computer Science’s industrial advisory board and is especially interested in increasing experiential learning opportunities for students.

“It’s vitally important that students get an idea of what their job as an engineer is going to look like,” Johnnie said. “Every chance we have to give students the opportunity to learn what it is that their boss will need from them and what the skillsets that they’re learning at Oregon State are going to be used for will make it much better for all involved.”

He notes that new engineers are going to be expected to stand on their own to a certain degree and to be self-motivated. Internships or other experiences will help give graduates the confidence and skills they need to meet these expectations.

Johnnie and his wife, Carol, who live in Southern California, have also been helping the OSU Alumni Association by hosting OSU new student sendoffs. The sendoffs allow new students from the area to get together before they leave home, and to meet others who are headed to Oregon State.

Johnnie can empathize. “I know when I moved to Corvallis, having come from Portland, I only knew a couple of people at Oregon State,” he said.

But once on campus, Johnnie thrived. “What I remember most is spending time working on homework and hanging out with my friends, experiencing life at Oregon State,” he said.

Johnnie’s life changing decision to pursue a degree in engineering has truly helped him reach new heights. “I look back and reflect on how I ended up where I am today, and the vast majority of it comes from the education I received at Oregon State,” he said.