Three students from Oregon State University’s College of Engineering have been named Goldwater Scholars for the 2021-2022 academic year.

Juniors Tegan Thurston and Cindy Wong, and sophomore Alyssa Pratt, are among 410 students — selected from a nationwide pool of more than 5,000 candidates — to receive the prestigious award. Emily Gemmill, a junior from the College of Science, also earned the scholarship. 

Goldwater scholarships are awarded by the Barry Goldwater Scholarship and Excellence in Education Foundation to sophomores and juniors in mathematics, natural sciences, or engineering who exhibit intellectual intensity and exceptional promise of becoming research leaders in their chosen fields. Each student will each receive up to $7,500 annually for tuition, fees, books, and housing expenses.

“These students stand out because of their impressive personal qualities and their proactive approach to forming research collaborations and nurturing mentor relationships,” said LeAnn Joy Adam, coordinator of the National and Global Scholarships Advising office at Oregon State. “Mentors have high expectations of them, and they consistently deliver outstanding work and demonstrate leadership qualities, such as mentoring new students.”


Left to right: Alyssa Pratt, Tegan Thurston, and Cindy Wong

Alyssa Pratt, Analyzing RNA

As a high school student in Portland, Pratt figured it would be a good idea to get a head start on college and meet with faculty at the school she planned to attend. She already had set her sights on studying computational biology, so she reached out to David Hendrix, associate professor of computer science at Oregon State, to ask some questions. The next time, she asked if he had any open positions in his lab. He did.

For more than a year now, Pratt, who is double majoring in biochemistry and molecular biology and in computer science, has been a valued research assistant in the lab. Her work has focused on characterizing secondary RNA structures called hairpins — a name that describes their distinctive “U” shape.

In one project, Pratt looked at an unusual type of hairpin that had been identified previously by another researcher in the lab. Curiously, when the hairpin’s nucleotide sequence was subjected to dinucleotide shuffling — a common technique in bioinformatics for evaluating genetic sequences — its structure remained unchanged. The trait earned it the name “unbreakable hairpin,” Pratt explained. She detailed all of the potential causes for its resistance to shuffling and highlighted the causes that appeared to be most important. 

In addition, she and Hendrix created an algorithm to predict the number of unique sequences that can be generated by shuffling. 

“The key finding from unbreakable hairpins is that randomization from dinucleotide shuffling isn’t always as random as you think it is,” Pratt said. “Researchers expect sequences to be scrambled and not resemble the original sequence. But there might be a one in 10 chance or a one in 1,000 chance of getting a particular sequence, and it’s very useful to be able to quantify that and to determine whether they’re going to get many new shuffled sequences or not.” The work has major implications for dinucleotide shuffling as a method of generating random controls for bioinformatics analyses.

“Alyssa shows a combination of motivation, curiosity, creativity, and intellect that will carry her forward toward success in computational biology,” Hendrix said.

Tegan Thurston, Ergonomics; Prosthetic Sensory Feedback

Thurston’s first big research project as an Oregon State student took her into operating rooms at Oregon Health & Science University in Portland. Working with Xinhui Zhu, an assistant professor of mechanical engineering at the time (now an ergonomics consultant), she assessed the musculoskeletal strain experienced by surgeons while they work. 

“Because they stand in awkward, static positions for hours every day, surgeons often suffer problems like joint and back pain,” said Thurston, a bioengineering major and Honors College student from Salem.

During the study, electrodes were positioned on the shoulders, back of the neck, lower back, triceps, and biceps of a group of surgeons. Tegan then observed and recorded the bioelectric impulses generated by the muscles while the surgeons performed laparoscopic gastrointestinal procedures. Changes in the signals indicated that muscles weakened markedly as surgery progressed. 

“We concluded that there’s stress going on in their muscles even though they’re standing still,” Thurston said. “As the doctors get older, those stresses can build up and cause a lot damage to the body.”

The findings provide information that might help surgeons ease fatigue and discomfort. For instance, they could focus on relaxing and stretching the affected muscle groups between procedures. The results may also offer insight into how long it takes before muscle fatigue diminishes a surgeon’s efficacy over the course of day — a factor that could have an impact on patient safety and surgical outcomes. 

“The results don’t point to a single solution, but they provide data from which a solution can be found,” Thurston said.

And in Oregon State’s Information Processing Group, Thurston is developing a haptic feedback system that returns sensory information for myoelectric hand prostheses — a valuable feature that many prosthetic systems lack. She’s also been immersed in genetic research in the lab of Michael Blouin, a professor of integrative biology, which she began while still in high school. 

“Tegan has been a wonderful member of our lab,” said Stephanie Bollman, a senior faculty research assistant who has worked closely with Thurston in Blouin’s lab. “She’s showed maturity beyond her years and great ability to do both molecular biology and statistical analysis. She continues to be a joy to work with.”

Cindy Wong, Storing Clean Energy with Seawater Electrolysis

Wong, a chemical engineering major from Albany, Oregon, dove into seawater electrolysis research during her Pete and Rosalie Johnson Undergraduate Internship. The positions are available to outstanding students in the school of Chemical, Biological, and Environmental Engineering who have completed their first year of study. 

In electrolysis of water, an electrical current splits water molecules into oxygen and hydrogen, which is a clean-burning renewable fuel. But using seawater poses a major challenge. 

“Seawater is more abundant and cheaper than fresh water, but it contains lots of chloride salts, which results in the evolution of [toxic] chlorine gas during electrolysis,” Wong said “That reaction interferes with the oxygen-evolving reaction.” Her primary research goal is identifying catalysts (used to coat the system’s electrodes) that result in high oxygen evolution and low chlorine evolution. 

Her work has expanded to include seawater electrolysis for the production of synthetic gas — a mixture of hydrogen and carbon monoxide — which can subsequently be converted into liquid hydrocarbons. “Much of my research is part of the larger challenge to find efficient methods for storing renewable energy,” Wong said.

“Cindy has been an outstanding member of our research team,” said Kelsey Stoerzinger, an assistant professor of chemical engineering and one of Wong’s mentors. “She’s inquisitive, eager to understand deeply and to learn more. She also excels in distilling information and presenting it in an accessible way.” 

Wong’s first venture into research occurred before she enrolled at Oregon State, when she participated in the university’s Apprenticeships in Science and Engineering Internship. The eight-week, STEM-oriented program matches exceptional high-school students with scientists and engineers.

“That’s where I discovered that I really enjoy research,” she said. “I’m invigorated by the chance to solve big problems, especially those related to sustainable energy and climate change, and I love the freedom and the creativity I have when I’m looking for those solutions.” 

Learn More

Oregon State has enjoyed a strong history of success with the Goldwater Scholarship. Two of the university’s nominees were selected in 2020, and all four were chosen in 2019. 

Schools are permitted to nominate up to five students each year. Forty-six Oregon State students have earned the scholarship since it was first conferred in 1989. 

Students interested in applying for the Goldwater Scholarship, or faculty who would like to encourage students to apply, can contact the National and Global Scholarships Advising office. On Tuesday, May 25, at 5 p.m. PDT, the office is hosting a Zoom panel discussion featuring Oregon State Goldwater Scholars. You can find more information about the Goldwater Scholarship on the advising office and Goldwater Foundation websites. 

Learn more about last year’s College of Engineering Goldwater Scholars here.

In April 2016, Oregon State University engineering doctoral students Dylan Jones and Seth McCammon deploy a Seabotix remotely operated vehicle to perform an autonomous underwater survey at the North Energy Test Site off the coast of Newport, OR.

The U.S. Department of Energy’s Water Power Technologies Office recently announced support of up to $22 million for 10 marine energy research projects, including three represented by researchers from Oregon State University’s College of Engineering. (The award amounts for each project are under negotiation.) 

“For industry to move toward commercialization, we need to utilize all of our available resources,” said  Daniel R. Simmons, assistant secretary for energy efficiency and renewable energy, in a Dec. 22 article on the DOE website. “With this funding opportunity, we addressed several critical gaps in the marine energy industry to advance early-stage R&D and build testing infrastructure, as well as foster collaboration among non-federal research entities.”

One of the proposed projects, led by Oregon State, will consider the co-design of marine energy converters for autonomous underwater vehicle docking and recharging. Two partner institutions, the University of Washington and the University of Hawaii at Manoa, will play supporting roles. 

“No one has been able to design a system to reliably dock an autonomous underwater vehicle with a marine energy converter in energetic ocean conditions,” said Geoff Hollinger, associate professor of mechanical engineering and robotics and Oregon State’s principal investigator for the energy converter project. “We would be the first to do that. It would open up a huge new market for inspection, monitoring, and repairs in marine energy systems without relying on expensive ship support.” 

Testing will be conducted in the O.H. Hinsdale Wave Lab at Oregon State. 

In a second project, researchers will test models for integrating marine energy into microgrids. Oregon State will support the work, which will be led by the University of Alaska Fairbanks. 

Microgrids are local energy grids that can be connected to the main energy grid or operated independently. 

“Over the past few years, there’s been agreement on what are good models for wind generation and other renewable energy sources, but models for marine hydrokinetic converters need further validation and benchmarking,” said Eduardo Cotilla-Sanchez, associate professor of electrical and computer engineering and Oregon State’s principal investigator for the microgrid project. “I’m most excited about bringing together the marine microgrid environment and the expertise of on-shore power engineers to leverage their historical knowledge of how to run power systems efficiently and safely, while advancing new forms of clean energy that the ocean provides.”

For the third project involving the College of Engineering, researchers will pursue the development of modeling methods that facilitate the design of wave energy converters. The venture will be led by the University of Washington and supported by Oregon State and the University of Alaska Fairbanks.

Members of the Energy Systems Group inspect microgrid electrical equipment in at the Wallace Energy Systems & Renewables facility at Oregon State, February 2019. From left: College of Engineering graduate Marissa Kwon; Eduardo Cotilla-Sanchez; Yue Cao, assistant professor of electrical & computer engineering; Ted Brekken; and doctoral student Ali Haider.

Wave energy converters transform the kinetic and potential energy of ocean waves into mechanical or electrical energy.

“Our objective is to develop models for wave energy converters that bring electrical, hydrodynamic, and mechanical domains under one framework and that lead to improved simulation speed, flexibility, and design,” said Ted Brekken, professor of electrical and computer engineering at Oregon State and one of the researchers representing the team focused on the model’s electrical components.

Bryson Robertson, associate professor of coastal and ocean engineering at Oregon State and principal investigator for the wave energy modeling project, offered a broader context about the potential impact of all three endeavors: “The work will help to fill fundamental gaps in our knowledge of marine energy sources and to overcome barriers to the development of emerging technologies,” he said. “Ultimately we hope it leads to reduced costs and improved performance of renewable marine energy.” The projects will also offer cross-disciplinary research experiences for College of Engineering students. 

— By Steve Frandzel

By Steve Frandzel

College of Engineering faculty won six of the 21 annual Oregon State University Day Faculty Senate Awards—and $30,000 in accompanying funding. The awards, handed out at a dinner ceremony by OSU President Ed Ray, recognize the best work and achievement of OSU faculty. Congratulations to all of the winners!

Christopher Hagen, assistant professor in the School of Mechanical, Industrial, and Manufacturing Engineering and Director of the OSU Energy Systems Laboratory at the OSU Cascades Campus won two awards: the Faculty Innovator Award ($10,000), which recognizes a faculty member whose extraordinarily high-impact innovations from research are translated into transformative results that help promote economic development and social progress; and the Excellence in Postdoctoral Mentoring Award ($2,000), which recognizes and encourages outstanding mentoring of postdoctoral appointees by OSU faculty members.

The Industry Partnering Award ($10,000), which recognizes a faculty member who achieves extraordinarily high impact innovations through research collaborations with industry, went to Karl Haapala, associate professor in the School of Mechanical, Industrial and Manufacturing Engineering.

Kendra Sharp, Richard and Gretchen Evans Professor in Humanitarian Engineering in the School of Mechanical, Industrial, and Manufacturing Engineering, was awarded the International Service Award ($1,000) in recognition of her exemplary, on-going contributions to the internationalization of the university by enhancing student, faculty, and staff awareness and participation in international education, research, and related activities.

The Student Learning and Success Teamwork Award ($5,000) went to the School of Mechanical, Industrial, and Manufacturing Engineering Capstone Design Team of Javier Calvo-Amodio, Robin Feuerbacher, Chris Hoyle, John Parmigiani, Tracy Ann Robinson, and Nancy Squires. The award recognizes departments or interdisciplinary groups at OSU that have demonstrated exceptional teamwork in creating and sustaining an exemplary teaching and learning environment to advance the university’s strategic goal of student success and excellence.

Cindy Grimm, an associate professor in the School of Mechanical, Industrial, and Manufacturing Engineering, was awarded the Dar Reese Excellence in Advising Award ($1,000) for outstanding advising of undergraduate students by a member of the OSU faculty, as well as demonstrated success in teaching, research and service.

To see a list of all 2016 award recipients, visit http://oregonstate.edu/events/universityday/award-recipients-amp-nomination-process