Workshop participants at Oregon State University.
Researchers from all over the world gathered at Oregon State for “Frontiers in Metrology Techniques for Magnetic Nanodevices”

Researchers from universities, national laboratories, and tech companies came to Oregon State University this July to discuss needs and challenges in measuring the performance of magnetic nanodevices.

This first-time workshop, called “Frontiers in Metrology Techniques for Magnetic Nanodevices” drew participants from as far away as Japan, Belgium and the United Kingdom. It was jointly organized by Pallavi Dhagat, associate professor of electrical and computer engineering, and Thomas Silva at the National Institute for Standards and Technology.

The purpose of the workshop was to bring together researchers from diverse areas working on magnetic nanotechnologies to share information that could spark collaborations and advance the field. The format of the workshop emphasized networking and encouraged sharing unpublished and ongoing work.

Ania Bleszynski Jayich
Ania Bleszynski Jayich, associate professor of physics at UC Santa Barbara, attended the workshop at Oregon State University.

“The targeted goals of the workshop made for productive and highly relevant discussions and networking,” said Ania Bleszynski Jayich, associate professor of physics at UC Santa Barbara. “As a physicist with a basic research approach, it was instructive to discover several close connections to industrial needs, and thus I was able to initiate several important relationships that will hopefully flourish in upcoming years.”

Although there are several conferences in the field of magnetism this was the first international workshop that was focused solely on metrology. Attendees gave very positive feedback and indicated they would like it to become a biennial event.

“It was very fruitful. We were often behind schedule because the talks were generating so many discussions,” said Hans Nembach, senior research associate at University of Colorado, Boulder. “It’s a great format, we should certainly have it again.”

Support for the workshop was provided by Oregon State University, Oregon Nanoscience and Microtechnologies Institute and Intel.

Eduardo Cotilla-Sanchez
Eduardo Cotilla-Sanchez speaking at the Electrical Systems Resilience and the Cascadia Subduction Zone Event course.

Oregon State University in collaboration with Portland State University held a one-day course on June 30, 2017 for power systems engineers and related professionals concerned with solutions to the threat of Cascadia Subduction Zone earthquakes and tsunamis.

The course was part of a grant from the Oregon Talent Council to support training for the Oregon workforce in disaster preparedness as it relates to electrical system resiliency.

Members of 17 different companies or other organizations came to the event including representatives from the Bonneville Power Administration, Portland General Electric, Central Lincoln PUD, Pacific Power and the Eugene Water and Electric Board.

The speakers were Ted Brekken, Jinsub Kim, Eduardo Cotilla-Sanchez of Oregon State University; Leon Kempner of the Bonneville Power Administration; and Yumei Wang from the Oregon Department of Geology and Mineral Industries.

Ted Brekken
Ted Brekken presenting at the Electrical Systems Resilience course.

Videos from the Oregon State speakers are available on a playlist at the OSU EECS YouTube Channel. Or the individual talks are:

Other training supported by the Oregon Talent Council grant includes an on-campus course that Brekken taught in the spring term of 2017, and an on-line course that will be released this summer by the Oregon State University Office of Professional and Continuing Education meant for practicing professionals.

Image of coal mining waste.
Distribution of coal mining waste along streams and water bodies. Created by Taylor Alexander Brown, Heidi Ann Clayton, and Xiaomei Wang for their project called Coal and Open-pit surface mining impacts on American Lands (COAL).

Three Oregon State University students working with the Jet Propulsion Laboratory received the Extreme Science and Engineering Discovery Environment (XSEDE) Startup Allocation based on their senior design capstone project.

Taylor Alexander Brown (computer science), Heidi Ann Clayton (computer science),  and Xiaomei Wang (finance), also won the CH2M Multidisciplinary Collaboration Award at the 2017 Undergraduate Engineering Expo at Oregon State for their project called Coal and Open-pit surface mining impacts on American Lands (COAL).

The team created a system to process remote-sensing data to identify land surface types, coal mining operations, and the environmental impacts on water resources to help NASA’s Jet Propulsion Laboratory study the effects of coal mining on the environment.

The XSEDE award will allow the team to continue development on the project including the use of XSEDE resources for benchmarking, evaluation and experimentation. Funded by the National Science Foundation, XSEDE is a collection of integrated advanced digital resources and services.

“The availability and opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research,” said Lewis John McGibbney, data scientist at the Jet Propulsion Laboratory, and the client for the project.

“I am extremely proud of the team’s achievements and know that such endeavors set a high standard for each and every one of them as they progress further through their journey in higher education and beyond.”

Vishvas Chalishazar, Kamesh Mullapudi, and Sharmin Kibria took top honors for the School of Electrical Engineering and Computer Science at the Oregon State College of Engineering’s Graduate Research Showcase.

The three also presented their research posters at the Oregon Stater Awards ceremony a week later, where they were able to meet with distinguished alumni.

Preventing massive power outages

Sharmin Kibria
Sharmin Kibria

In the summer of 2003, a massive blackout occurred in the power grid in the northeast United States and Canada, resulting in a loss of power for two days, affecting 55 million people across eight states and Ontario. The cause of the outage was traced back to the grid’s control center failing to identify few anomalies in measurements and not providing an accurate analysis of the problem. Because the control center was unaware of the situation, it wasn’t able to take preventive action in time, and the fault spread throughout the interconnected grid.

Working with Jinsub Kim, assistant professor of electrical and computer engineering, doctoral student Sharmin Kibria is looking for ways to prevent power outages, big and small. She is developing better ways for control systems to detect and identify anomalies in measurements and fix issues before they become problems.

Conventional methods for detecting anomalies in measurements rely on measurements collected by sensors at only a single time point of interest. In Kibria’s algorithm, the sensing system scans the grid continually — every two to four seconds — to obtain readings from multiple time points and use them to enhance accuracy of measurement correction. The key idea is to exploit a generic property of anomalies in a sensor network. Specifically, their locations tend to be invariant over multiple measurement periods.

“We can accurately identify where the error is and throw out corrupted data and use healthy measurements,” Kibria said.

Kibria tested her proposed algorithm on a model of a portion of the New England power grid and it outperformed the benchmark technique that uses single measurements, showing great promise for a better system that won’t leave us in the dark.

Helping save lives after earthquakes

Vishvas Chalishazar
Vishvas Chalishazar

First place winner Vishvas Chalishazar, a doctoral student in electrical and computer engineering, is working with the energy systems research group to help make sure critical buildings, like hospitals, remain functional after an earthquake.

“The main idea is to make the whole electrical grid more robust, more resilient, and add more redundancies,” Chalishazar said.

Although it is impossible to ensure that the entire grid never loses power, Chalishazar is working to figure out which nodes in a grid will likely become impaired and help electric utility companies develop their plans to shore up specific assets in their grids.

Under the guidance of Ted Brekken and Eduardo Cotilla-Sanchez, professors of electrical and computer engineering, Chalishazar developed and ran one million simulations on a simple 3-bus electrical grid model. His next step will be to develop and apply simulations to the Oregon State University’s Corvallis campus grid, which consists of 286 buses.

The energy systems group is working with the Central Lincoln People’s Utility District, Portland General Electric, and Pacific Power to research grid operation, planning, and analysis methods for improved resiliency.

Pushing the limits of Moore’s Law

Kamesh Mullapudi
Kamesh Mullapudi

Many scientists have been predicting that the death of Moore’s Law — that the number of transistors on an integrated circuit (IC) doubles each year — is imminent, but electrical and computer engineering doctoral student Kamesh Mullapudi is working to delay its demise.

IC manufacturers are currently working on developing and producing 10-nanometer node transistors. These transistors — some of them just 50 atomic layers across — are so small that finding defects on chips is challenging. Optical and electron microscopy techniques currently being used to detect defects, are inadequate and impractical for transistors that make up the latest microprocessors. Magnetic resonance can detect defects on this scale, but the giant magnets required are not practical and expensive.

To overcome these obstacles, Mullapudi is working with John Conley, a professor of electrical and computer engineering, on using low-field electrically detected magnetic resonance (LFEDMR) that uses small magnets and is extremely sensitive. This technology can help pinpoint not only which chips are defective on a wafer, but can help identify the cause of a particular defect.

In the chip manufacturing business, yield loss (the number of defective chips on a wafer) is costly.

“We’re working with Intel to develop the LFEDMR technique to a scale that is implementable in industry and ultimately increase their yield and profitability,” Mullapudi said.

Story by Gale Sumida

2017 Rohde & Schwarz Engineering Competition team photo.
Braxton Cuneo, Erich Kramer, Andy Tolvstad, Karen Harper, and Aaron Schraner (left to right) advanced to the world final of the 2017 Rohde & Schwarz Engineering Competition.

Five students in the School of Electrical Engineering and Computer Science will be heading to Germany this summer to compete in the 2017 Rohde & Schwarz Engineering Competition. Their performance in the U.S. preliminary round earned them a spot at the world league competition.

Aaron Schraner, an electrical and computer engineering student, was motivated to compete since he participated last year on a team from the Oregon Institute of Technology that won the 2016 regional competition. Based on his experience there, he recruited Karen Harper for additional electrical engineering knowledge. All the other team members are in computer science:  Braxton Cuneo, Erich Kramer, and Andy Tolvstad.

Their task was to make improvements to software for a digital-signal processing application that could ultimately make video streaming better. Specifically, they were asked to speed up the processing of the software-based DVB-T2-Coder, based on the open source GNU Radio project, while maintaining accuracy.

“Signal processing is traditionally very, very computationally intensive, so any optimizations you can get out of something like that are going to be very beneficial to your workflow,” Andrew Tolvstad said.

“There was one loop we optimized that was run about 1.2 million times,” Karen Harper agreed.

“Just by changing a data type that was 32-bits wide to one that was 64-bits wide, we took another 5 to 10 percent off the total amount of time it took to run the program,” Aaron Schraner said.

During the competition, students made improvements to the code that was then automatically compiled and tested for performance once they submitted it via Git. Rohde & Schwarz continuously published a leader board of the top performing teams so the teams could watch their ranking move up or down.

The team members are excited to have an all-expenses paid trip to Germany, and are squeezing the trip into very busy lives of classes and internships. They also have a chance to win $3,000 for the top prize, $1,500 for second place, and $750 for third place.

But the money was not the only objective.

“It’s been a lot of fun,” Tolvstad said. “Just the thrill of trying to take something and make it the best it can possibly be by just rearranging its parts.”

This final will be held in Munich, Germany at the Rohde & Schwarz headquarters. Rohde & Schwarz is a privately held company with over 10,000 employees worldwide, including a design center in Beaverton.

Kedi Yan (electrical & computer engineering) and Nick Wong (computer science) work on their self-playing guitar. More photos in the OSU EECS Flickr album.

“Gadgets and Gizmos” was the theme for the first HWeekend of 2017 on January 20-22, jointly sponsored by the College of Business and the College of Engineering.

In just one weekend, forty-seven students from business and engineering designed, built, and pitched their idea for a marketable product including temperature based alarm clock, a computer controlled potato launcher, a 3-D printed longboard fender, and a self-playing guitar.

It was the seventh iteration of the popular event that provides students from different disciplines an opportunity to work together in teams. Students came from a variety majors including business, bioengineering, civil engineering, chemical engineering, computer science, electrical and computer engineering, environmental engineering, and mechanical engineering.

“This event is really cool, because I get to do things that I normally don’t get to do in my major,” said Alec Westbrook, a chemical engineering student who worked on the 3D printed longboard fender project. “I mean, how often can a guy that is mixing chemicals all day work with his hands and create something new?”

Photo of potato launch team.
The potato launch team tests out their device. More photos in the OSU EECS Flickr album.

This event allowed students to make use of the new Buxton Hall Makerspace and Mastery Challenge lounge, which gave students access to 3-D printing, soldering irons, a drill press, laser cutting, and UV ink logo printing.

Mentors for this HWeekend included six industry members from Intel and two from Microsemi.

“People here are really excited about the things they are making,” said Aayush Pathak, a silicon architecture engineer from Intel who attended HWeekend as a mentor. “And to be a part of it and share what I have seen in my school and life — it’s a proud feeling.”

Staff from both the College of Business and the College of Engineering also helped mentor students through the creation and marketing of their projects.

“It’s an incredibly valuable partnership between business and engineering,” said Dale McCauley, the makerspace manager for the College of Business. “The students are getting the chance to build relationships that ordinarily wouldn’t form. If you get business students to understand how engineers think and vice versa, I think that is valuable.”

At the end of the weekend, the students received group awards for their dedication and hard work. The Executors award goes to the team that produces the best engineering execution of their idea to create the most polished final product, the Helping Hand is for the team that contributes the most to other teams, and the InnovationX Pitch awards go to two teams who had the best business pitches for selling their prototypes.

Photo of temperature-based alarm clock team.
The temperature-based alarm clock team works out their design.

Award winners

Executor: Temperature Based Alarm Clock team. The team included members Noah Hoffman, Taylor Johnston, Alexia Patterson, and Abdurrahman Elmaghbub.

Helping Hands: Checkpoint team. The team included members Andrey Kornilovich and Graham Barber

InnovationX Pitch: Checkpoint team and Temperature Based Alarm Clock team.

Story by Taylor Mrzena

Margaret BurnettProfessor Margaret Burnett has been on a roll lately, to put it mildly. Her most recent award is the 2017 Undergraduate Research Faculty Mentoring Award announced this month by the Education Committee of the Computing Research Association. This follows a string of awards from national organizations including the CHI Academy, the National Center for Women and Technology, ACM SIGSOFT, and IEEE Symposium on Visual Languages and Human-Centric Computing. She was also named 2016 Distinguished Professor recipient by Oregon State University, the highest academic honor the university can bestow on a faculty member.

The following quote comes from the the Education Committee of the Computing Research Association award announcement:

Margaret Burnett, Ph.D., is a distinguished professor in the School of Electrical and Computer Engineering at Oregon State University (OSU), a member of the ACM CHI Academy, and an ACM Distinguished Scientist. Burnett has contributed pioneering research on how ordinary users interact with software and optimizing that interaction. This resulted, in part, in the development of a new subarea, which is at the intersection of human-computer interaction and software engineering, called end-user software engineering.

 

Throughout her academic career, Burnett has continuously worked with undergraduate researchers and even accommodated high school students in her lab. She has mentored 39 undergraduate students in research; 21 were from underrepresented groups in computing, 32 co-authored published research papers, and 25 went on to graduate studies. A selection of the honors of her highly accomplished mentees includes three Google Scholarships, three NSF Graduate Fellowships, and two National Physical Sciences Consortium Graduate Fellowships. In her nomination, several mentees attested to her personal influence on and involvement in their lives and careers.

 

Impressively, Burnett influenced the culture of faculty undergraduate research mentoring in her school, increasing it to 50% participation. She has also led efforts to better support a diverse undergraduate population through trips to the Grace Hopper Celebration of Women in Computing, the adoption of a diversity plan, and new experimental scholarships for incoming freshmen women in computing. She has received awards from NCWIT, Microsoft, and OSU for her mentoring and research.

Ziad EldebriGraduate student Ziad Eldebri was the winner of the Lattice Hackathon Contest hosted by Lattice Semiconductor. He was awarded the grand prize of $5,000 and a trip to the Consumer Electronics Show 2017 in Las Vegas, Nevada. Eldebri competed against other students across the country to create an original idea on how to improve a battery powered device using Lattice FPGA. Eldebri’s winning idea was to develop a LIPO battery charger that could be used in any product that uses Lattice FPGAs.

“It was awesome, because I got to attend the Consumer Electronics Show and see state of the art electronics that ranged from 3D printed cars to drones that will talk to you,” Eldebri said. “I also got to learn more about Lattice Products and FPGAs.”

The goal of the competition was to create new ideas on how we can use FPGAs to improve our lives and the electronic devices that we use every day.

Story by Taylor Mrzena

Rey Pocius
Rey Pocius had a great experience as an intern at Metal Toad as a freshman.

Guest Post by Rey Pocius

As a freshman it’s pretty difficult to land an internship because most companies are looking for people with more experience or students who will be graduating soon. But it is possible! This summer I had the opportunity to work for Metal Toad, a software consulting company in Portland, Oregon that offers technical consulting, product development, application support, and managed cloud services to a broad set of clients such as major TV networks, non-profits, health institutions, cultural institutions (such as The Emmys and Golden Globes), and corporations in the technology sector.

I took the initiative to email the marketing manager which eventually led to a phone conversation. I found that professionals in the Portland software community are surprisingly very willing to spend time talking with you. We talked about what the company did and the culture of the company. After some time I was able to speak to the director of human resources and we talked about the internship program, the logistics, and how I could fit into the company as an intern. This led to a phone interview and then a second interview at the company site.

The interview was different from what I had expected — it was less technical, and more centered on cultural fit. I then followed up with email thanking them all for their time and saying that I was looking forward to hearing back to them about the position. About a week later they replied to me asking me if I was still available to take the position.

It was a learning experience for all of us. The company is relatively small and their internship program is still growing and changing, so I was their first intern “guinea pig.” I was new to the formal workplace and was doing something completely new to me — DevOps.

My First Day

I took the internship without having seen the office where I’d be working. It was not what I expected. There were no cubicles, but rather it had an open floor plan. Software developers and other professionals sat next to each other. I was to contribute my expertise to the cloud services (or DevOps) team. Our job was to configure custom cloud services to help align with what the software developers are doing and what the clients want.

I immediately asked for things to do and I was given task after task by my mentor, who was the senior engineer on the team. It seemed like there was an endless amount of things for me to do if I was willing to learn, so I took on whatever I could, even if I had no knowledge about it.

Our team used the Kanban methodology, which produces tickets or tasks from a list of things to do. The Kanban methodology is similar to having a wall covered in sticky “to-do” notes. Members of teams then finished tasks on a first come first serve basis. This methodology worked very well for the small and experienced DevOps team. Everyone on the team was capable of taking on anything coming their way.

Lessons Learned

I took advantage of the resources that I had to learn as much as I could over the 12-week internship. I contributed to several internal DevOps along with working on some client side projects. One experience that students don’t always have access to during undergraduate course work is seeing how a consulting firm, such as Metal Toad, interacts with the clients continuously to create and maintain great products. Being at a small software company allowed me to see all sides of the operations, which was invaluable. Not only was I able to learn and get advice from my mentors, but I was able to learn about the business end of things along with how our work affects our clients and software developers.

Extra-Curricular Fun

Being in the city exposed me to other software companies in the area. Our company was part of the Portland Tech Intern Experience which is a collaborative effort to give a voice to Portland’s growing and diverse tech industry. I would highly recommend this organization to gain greater access to players in the Portland tech industry. The program offered several different networking events and lunch learning sessions that helped unite and nurture the Portland tech scene. During these network events, I met and learned from former interns, and was exposed to future technologies areas of computer science such as deep learning. I also met CEOs, angel investors, and recruiters.

The networking experience that I gained from this internship is invaluable to me. It really opened my eyes to the special software company culture that Portland has. The CEO of Metal Toad encouraged the interns to message people on LinkedIn who they want to learn more about, and ask them for 30 minutes of their time for coffee, or for anything. Driven interns, even “guinea pigs” who can convince companies they’re able to learn and tackle just about any new task, will find that people are more than willing to help you.


Author biography:

Rey Pocius grew up in Elmhurst, IL, where he attended York Community High School. He moved to Oregon in pursuit of the growing tech scene in Portland and the thriving programs at Oregon State. He is also the President of the Oregon State University Association for Computing Machinery student chapter (OSU ACM).

He is very passionate about informing others about the ever growing tech field and helping people find the help they need to launch their careers. He is also particularly interested in deep learning and robotics. He hopes to focus his research and efforts into those two areas.

Outside of academia he enjoys playing tennis and spending a lot of time hiking around the Corvallis area. So don’t be surprised if you find him on some of the local trails. He also enjoys painting and working on software side projects.

Winning iDash team
The winning iDASH team for the “Secure Outsourcing” challenge. Peter Rindal is second to the left.

Graduate student Peter Rindal was on the winning team at an international computer security competition hosted by iDASH, a National Center for Biomedical Computing. The team members were interns and postdocs at Microsoft Research competing against seven other groups from around the world to win the “Secure Outsourcing” challenge.

“The competition pushed us to develop promising new research and brought us together with people in healthcare who want to see this technology in the real world,” Rindal said.

The goal of the competition was to advance the state-of-the-art for research on information privacy for genetic data. An application of their project could be secure cloud storage for medical data so patients and doctors could query data without revealing sensitive information to the cloud (e.g., predisposition to Alzheimer’s disease).

Specifically, the group calculated the probability of genetic diseases through matching a set of biomarkers to encrypted genomes stored in a commercial cloud service. The matching was carried out using a process called homomorphic encryption, which leaves no trace of the computation, so that only the patient and doctors can learn the answer to the question.