Hopefully some food chemistry came to life…

There are many elements needed to create a good and compelling class – good material, a willing instructor, but the essential element is enthusiastic and dedicated students.  It is a circular argument: enthusiastic students generate enthusiasm in the instructor, which generates enthusiasm in the students, and around we go again.

I was privileged to have an almost uniquely good natured, good humored, and hard-working group who were willing to participate in this experiment in teaching food chemistry. Of course not everything that was tried worked flawlessly – but no good thing was ever perfect the first time around. And we were not having enough fun…

The key structural element of the class that I believe led to our moderate success was the use of case studies to highlight many of the basic elements of food chemistry. The two more successful ones were bread making and espresso.

Breadmaking was viewed as a system both in narrow and broad senses. In the narrow sense: a matrix of interacting components in the dough and in the finished product. In the broader sense; as the progress of a variable agricultural raw material through its intermediate processing steps (e.g. milling) through to final processing, storage, and consumption.

In the narrow sense we were able to incorporate elements of…

Polymer Science (entanglements, glassy and rubbery states and their responses to changing temperature and plasticization [water])

Rheology (viscoelasticity)

Starch behavior (gelatinization, susceptibility to attack by amylases, & retrogradation [junction zone nucleation and growth] and staling)

Maillard reactions (the effects of water activity, temperature, pH [mostly with the pretzel lab], and the contribution of fermentable reducing sugars from damaged starch)

Foams and foam stability (dough gas cells as a solid/liquid foam stabilized by proteins and lipid-based surface active components, the foam to sponge transition from dough to bread)

Enzymatic activity and thermostability (mostly amylases:  the increasing susceptibility to hydrolysis of undamaged and damaged starch granules and finally gelatinized starch; the different windows of opportunity for extensive hydrolysis of gelatinized starch during baking by fungal, cereal, and bacterial amylases )

In the broad sense we were able to observe elements of…

Genetics (the interaction with genetically determined kernel hardness and subsequent starch damage during milling, fermentable sugar production by amylases, and Maillard development of crust color; the genetics of gluten protein variability and its effects on gluten and dough viscoelasticity),

Rheology/Polymer science (fracture mechanics of kernels, polymer entaglements – stress build up and subsequent relaxations as vital steps in the transformation of flour, water, salt, and leavening [yeast or sourdough] to bread)

Espresso was also viewed in these two ways.


In the narrow sense we were able to incorporate elements of…

Rheology – the contribution of particulates to viscosity, the contribution of polymer size to viscosity and to the persistence of espresso crema as expressed by changes in foam drainage related to viscosity

Maillard (of course) – during roasting, the delay while the beans dry out, the increasing darkness, the formation of aromatic volatiles, the production of carbon dioxide, and the role of carbon dioxide in the formation of the cream foam.

Microstructures and inhomogeneity – the idea of espresso as a polyphasic colloidal system (e.g. Piazza, L; Gigli, J; Bulbarello, A (2008). Interfacial rheology study of espresso coffee foam structure and properties. Journal of Food Engineering 84 (3) 420-429. )

In the broad sense we were able to incorporate elements of…

The idea of coffee as an agricultural product; variability in composition related to species, region of growth, the fact that it needs intermediate processing before it can be roasted (allowing an opportunity to explore cell wall polysaccharides in detail  – particularly the pectin in the cherry mucilage).
Of course there was much more – but this is just a summary.

And of course student engagement is vital. The following pictures tell the story, and I need to express tremendous thanks the class for their collective contribution to a successful term !!!

Starch lab

Pretzel lab

Coffee day

Starch again

Meat lab

Baking lab