Northwest Hardwoods donates $25,000 of lumber

OFSC construction

Northwest Hardwoods, Inc. (NWH), the leading manufacturer of high quality hardwood lumber in North America, donated $25,000 worth of lumber to the new Oregon Forest Science Complex. The lumber donation of alder wood will be used as cladding for the outside of the new building.

“The Oregon State University College of Forestry is an internationally-recognized leader in education, research and policy for managing and sustaining working forest ecosystems,” says Don Barton, vice president of sales and marketing for Northwest Hardwoods. “It’s a natural fit for us to be a part of the next metamorphosis of forestry management and sustainability.”

Oregon State University and the College of Forestry officially launched a $79.5 million initiative in January 2015 to build the Oregon Forest Science Complex. Once completed, the state-of-the-art facility will provide current and future students with a transformative educational experience across a full range of forestry and natural resources degree programs.

“Northwest Hardwoods’ gift and in-kind donation will enable us to build a new, engineered wood facility that will inspire students and create a beautiful, inviting and healthy space for them to learn,” says Acting Dean Anthony S. Davis. “Grown and made in Oregon, the facility will reinforce our status as a place where students go to find innovative solutions to complex challenges, so they can improve our forest landscapes, ecosystems, and communities.”

Undergraduates explore use of mass timber

Students nervously pace the second-floor knuckle of Richardson Hall on a cool, spring day. Some flit to the walls to make sure their posters are perfectly secured and their models are ready to shine. Others nervously nibble on chips and watermelon.

It’s final exam time, and for students in assistant professor Mariapaola Riggio’s class, that means making a presentation in front of their classmates, other faculty members and industry professionals.

The class, Timber Tectonics in the Digital Age, examines how the design and construction of timber structural systems benefit from digital techniques. Architecture students from the University of Oregon’s School of Design are invited to enroll alongside Oregon State students studying renewable materials, wood science, civil engineering and construction engineering management.  All students work collaboratively, as part of a small team, thinking critically about how digital tools might be able to change the wood construction sector.

For their final project, the students were tasked with creating a ‘wood products pavilion’ that might represent the TallWood Design Institute at the International Mass Timber Conference in Portland in 2019. The institute is one of the nation’s top research collaboratives focusing exclusively on the advancement of advanced wood products. The students used parametric techniques to design adjustable forms, and then refined them according to structural analysis information. The final challenge has been to plan the construction process appropriate materials and detailing.

“We’ve had a great partnership,” says Nancy Yen-Wen Cheng, Architecture Department head at the University of Oregon. “And it has been a privilege to co-teach with [Riggio]. She brings knowledge of the latest advances in timber structures and has been insightful about how to employ my digital design specialization.”

Brent Stuntzner of CB Two Architects in Salem agrees. He served as one of the judges of the students’ final projects.

“I’m always really excited to go in and ask the students questions,” Stuntzner says.

Despite their nervousness, the students prevailed and presented thorough and exciting final projects.

“They are full of creative ideas,” says Stuntzner. “And after this class they are prepared to go into a variety of different environments within the construction and wood products industries.”

Putting CLT through the fire

“There’s a dirty little secret about wood,” says TallWood Design Institute researcher Lech Muszynski. “It burns.”

Muszynski studies the fire resistance of cross-laminated timber. When discussing this topic, he often refers to a photo from the great San Francisco fire in 1906. In the photo, two melted steel beams lay across a wooden beam.

The beam burned, while the steel softened. But Muszynski says the old photo proves the difference between flammability and fire safety.

“Materials that do not burn may be less fire safe than wood that does burn, but keeps its load bearing capacity much better,” he says. “In this case, the steel lost its load bearing capacity, while the wood, which didn’t burn completely, retains its ability to bear a load and saves the space below from being crushed.”

Despite this evidence from the early 1900s and recent research conducted in Europe, the American public is still concerned about fire when it comes to wooden buildings, and American construction companies don’t have enough data to ensure tall wooden buildings are up to code. Muszynski hopes to provide this data and put minds at ease with his latest research project, which tests the fire resistance of cross-laminated timber floors and walls.

“The point of my project is not to generate new science, but to provide a large-scale demonstration of how cross-laminated timber panels react to fire,” Muszynski says.

When Muszynski says “large scale,” he means it. Many of the panels he tested in a large furnace at the Western Fire Center in Kelso, Washington were too large to be transported in one piece, and had to be assembled on site.

The samples went into the furnace completely unprotected with any kind of fire-proofing materials typically used in wooden construction. Thermocouples, which measure temperature, were attached to the panels to collect data while the panels were exposed to fire.

Muszynski said that each panel experienced similar, gradual and predictable charring rates: the surface of the panels darkened within two minutes, caught fire and eventually a layer of char formed on the surface of the wood.

“Every floor panel we tested survived two hours of fire exposure,” Muszynski says. “After two hours we cut it off and inspected the sample. Only one wall sample failed after 90 minutes, and that’s still pretty good.”

The next step of the project is evaluating the charred samples. For this, Muszynski employed two Oregon State undergraduates.

“At first he tried to talk me out of the job,” says senior forestry student Cassie Holloway. “We were starting in the middle of summer, and doing this kind of heavy manual labor in the heat is pretty difficult.”

But Holloway and her partner prevailed. They cut each sample into one-foot by one-foot samples and evaluated the char depth to ensure consistency with data from the thermocouples.

Holloway first heard about CLT in her junior seminar class and was immediately intrigued.

“Growing up, I was very interested in conservation and sustainability,” Hollway says. “I think it’s awesome that people are using renewable materials to build up instead of out. I was really excited to be able to work on this project.”

Once sampling is completed, Muszynski says he will work to create a map of the char depth of each sample. Next, he hopes to test the fire resistance of connections used in CLT construction.

“Our ultimate goal is to make the TallWood Design Institute the one-stop place for testing anything mass-timber including CLT and glulam and whatever comes next,” Muszynski says. “This must include fire testing.”

Savannah Stanton

Savannah Stanton is just a junior, but she already has plans to graduate from Oregon State debt free and work to change the world.

“I’ve always wanted to do something for my community and for the world,” she says. “Through renewable materials, I have the opportunity to do that.”

The Newburg High School valedictorian chose to attend Oregon State after she was awarded an academic achievement scholarship, but she still attended classes simultaneously at Portland Community College to get her baccalaureate core classes out of the way and discover her passion. She found it in a class taught by Seri Robinson called “Are You Wearing Mold?”

“The class drew me into the world of renewable materials,” Stanton says. “In the class, we dove into the world of fungi and what could be done with it. It was fun to do a hands-on class like that. It really appealed to me.”

Stanton believes an interdisciplinary course of study will be the key to her future success. He focus within renewable materials is science and engineering. She’s taken business classes, math classes and she will also earn a minor in Spanish.

“Every time a new term starts, I get new ideas,” she says. “My business classes inspired me to think about owning my own business someday instead of working for someone else.”

But Stanton isn’t exactly sure what she wants to do yet. Instead, she’s excited about a world of possibilities at home in Oregon and around the world.

During the summer of 2016, Stanton interned at a wood mill in Chile.

“That was my first time working in a mill setting,” she says. “It helped me understand the traditional part of our industry as well as an idea of the current needs are and expanded who I know within the small world of renewable materials.”

Stanton says her entire experience in Chile was funded through scholarships from the College of Forestry.

Back at home, Stanton is also involved in the student chapter of the Society of American Foresters at Oregon State. SAF is a professional organization dedicated to education and scientific pursuit in the field of natural resources.

“I got involved in SAF because I think it’s important to know what other parts of the industry are up to and what their concern are for the future,” Stanton says. “If you’re able to understand what other components need to make the whole machine work, you won’t get bogged down as much.”

She says that as a new professional, she expects to depend on the timber industry for the renewable materials needed to produce wood products.

“Renewable materials has a lot to do with timber production at some point,” she says. “Right now renewable materials only make up about five percent of the market, but I think it’s important to keep that in mind as I work toward establishing my career.”

Kendall Conroy

Wood science graduate student Kendall Conroy is focused on sustainability. She says the issue has been a hot topic in the Pacific Northwest her whole life. Conroy grew up in Hillsboro in a family of Oregon State graduates. Attending Oregon State as an undergraduate was an easy decision, she says. Picking a specific area of focus, however, was a bit more difficult.

“Oregon State has so many great options that I felt OK about coming here, even with no idea of what I wanted to do,” Conroy says. “Initially, I was kind of interested in forestry, but I didn’t actually want to work outside. When I learned about the renewable materials program, and that I could kind of marry a forestry degree and a business degree, it seemed perfect.”

Conroy was awarded a scholarship from the Dean’s Fund for Excellence and Innovation and chose to major in renewable materials and later added a second major in sustainability to further explore her life-long interest in sustainability. She participated in the SEEDS (Strengthening Education and Employment for Diverse Students) program, which matches students with a mentor and gives them opportunities to participate in hands-on research as an undergraduate.

Conroy was matched with Professor Eric Hansen and worked on a project researching gender diversity within the forestry industry.

“I learned a lot through that research project,” Conroy says. “Within the wood science program we have quite a few female students, but when you look at the industry and when you do internships, there aren’t as many. Experiencing this during an internship I experienced made the study more real and relevant to me.”

During her undergraduate experience, Conroy participated in a short-term, faculty-lead study abroad experience in central Europe. During her time in Slovenia, Conroy connected with a researcher there, and returned the summer after graduating to complete a research-focused internship.

“I got to help out with a literature review for them and a few other ongoing projects,” Conroy said.

Conroy enjoyed Slovene culture, learning a bit of the difficult language and enjoy a different culture in an international environment.

“Everyone in Slovenia was so nice, and I really enjoyed being part of a research team there,” Conroy says. “It seemed like every other week someone would visit from another country, and I was able to travel to Austria and Hungary to attend conferences. It was an amazing experience.”

Encouraged by her professors, Conroy returned to Oregon State in the fall to begin working toward her master’s degree.

Her research will determine architects’ perception of wood products in terms of general knowledge and sustainability.

“From this we will be able to better understand material choice and potentially how we can get more information to the people making choices about implementing wood as a building material,” Conroy says.

Conroy says that after completing her graduate degree, she would like to work with architects and designers as a consultant on sustainability and material choice.

“When contractors want to build a green building and they want to use wood, I want to be the person who can show them the sustainability of the timber they’re using,” Conroy says. “We don’t have very advanced ways of explaining that right now, so it’s my goal to tell the story of the sustainability of wood in the built environment.”