Soundbites is a weekly (biweekly, occasionally) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound.

Classification of non-song repertoire in Southeast Alaskan humpbacks:  I am only cheating a LITTLE bit with the fact that this is Michelle’s paper, but it is also very very interesting and applicable! Congrats, Michelle!

Soundscape analysis shows parrot preference for old-growth forestthese researchers used acoustic monitoring to show that seven out of nine species of parrot preferentially perch in old-growth forest instead of regenerating forest. Deforestation has long-term consequences that can’t be corrected by simply regrowing things, guys.

Fun link of the week: Holger has successfully moved to Ithaca, NY only to find himself buried in another Northeastern Snowpocalypse. So this week’s link discusses why it’s so much quieter when it snows. Hey Holger, send the Pacific Northwest some of that–I want to go snowboarding!

Soundbites is a weekly (biweekly, occasionally) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound.

Chronic noise impacts anti-predator behavior in house sparrowsa lot of the time, bioacoustics researchers are looking at the impact of noise on communication behavior, but that’s not the only behavior that can be affected. Female house sparrows flushed more easily in chronic noise environments, but this didn’t have an impact on their reproductive success.

Traffic noise affects coloration, not calling, in European treefrogssome frogs use what’s called multimodal signaling to attract mates, where females are drawn not only by the calling but also by a visual cue, like vocal sac inflation (see my previous post). Here, it turns out that treefrogs don’t seem to be  able to change their calling structure, but they are less vibrantly colored in noisy areas. This means it’s likely that noise doesn’t just affect vocal species.

Fun link of the week: this song has been in my head all week, and it’s called WHALE, so I’m pretty sure you should go listen to it.

Soundbites is a weekly (biweekly, occasionally) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound. 

Fish sound preference may inform migration patterns: here’s an interesting one. Water sounds are thought to be important in triggering upriver migration patterns, so these researchers played some tones and watched how fish reacted. They avoided the 100 Hz tone and were attracted to the 200 Hz tone. Then they fed this into a GIS model and think that they can replicate patterns now–they might even be able to manipulate migration behavior.

Boat presence as important as noise in disrupting foraging patterns in dolphins: these researchers used passive acoustic monitoring to listen to dolphin buzzes during foraging, and found that it was correlated more with boat presence than just noise level.

Fun link of the week: a scientific examination of whether or not a duck’s quack actually does echo (I love scientists because we do this sort of thing in our spare time).

Soundbites is a weekly (biweekly, occasionally) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound. We’re back in the new year (after a holiday break) with all your favorite acoustics news!

Bowheads show increasing song diversity in Beaufort-Chukchi seasin perhaps one of the more hopeful papers to appear in Soundbites, these researchers report 12 separate bowhead song types found in this area, the most to date. What’s more, they attribute the greater variety to population growth!

Noise may affect signal evolution in grasshoppers: I’m loving all these papers coming out about female preference in the face of noise. Here, females of a species of grasshopper showed a change in shape of their preference function when presented with male calls in noise (as opposed to quiet). Since this signal has a sexual selection component, the noise features of a landscape may in part drive signal modification.

Fun link of the week: I give you five minutes of the cutest frog in the world. Listen to its little peeps. It sounds so grumpy. (Seriously, this will cheer you up. It’s great).

The ice has grown thinner, the ship has grown boisterous with passengers, and with the exception of a few errant edits to cruise reports our scientific mission is complete. But the journey is not over; I still have a few days in New Zealand to tell you about, and a 30 hour transit home. Plus… we celebrated Christmas on the ship!

When I first started this trip I spelled out the cast of characters on the ship (my beloved Kiwi pilots, my Italian roommate Ombretta and her ocean acidification project). Well, the curtain has risen and fallen a few times on the passengers of the R/V Araon and it’s time for a new update. After our research cruise the R/V Araon returned to Terra Nova Bay to retrieve the scientists and crew that had overwintered there (that’s right, a year at Jang Bogo station). We also picked up a handful of KOPRI geoscientists who had spent the Austral spring at the base (and found a stunning meteorite!) to transit them back to Christchurch as well. The meteorite, which I feel privileged to have seen with my own eyes, is said to be the largest ever found by a Korean scientist and one of the largest in the world. It’s retrieval is exciting news in the geoscience world – history in the making.

In addition to our Korean colleagues, however, we picked up Scottish volcanologist John Smellie (if you aren’t immediately impressed with a volcanologist in Antarctica let me remind you that this man studies volcanic eruptions underneath the ice), and a motley crew of nine geologists, biologists, and zoologists and one fine soldier from Italy’s Mario Zucchelli Station,. Remember how I said the ship had become boisterous? You can imagine why.

My Italian friends and colleagues and I on the bow of the R/V Araon, departing Terra Nova Bay en route for New Zealand.
My Italian friends, colleagues and I on the bow of the R/V Araon, departing Terra Nova Bay en route for New Zealand.

Thanks to the graciousness of documentary filmmaker/marine zoologists Roberto Palozzi I resumed my Italian lessons (grazie mille, Roberto). Thanks to the sheer charisma of Nicoletta Ademolla I now have a sincere dream to study the vocal behavior of Adelie penguins (not forgetting of course the Weddell Seals). And thanks to my friend Arnold Rakaj I will forever look out for eels in shallow freshwater streams (although he is a marine ecologist by training, studying plankton… not eels). I won’t go into the specialties and details of all of the PNRA team, but suffice it to say that I was extremely impressed with the breadth and range of their work… I’d even go so far as to say envious. A comprehensive seal reproduction study which includes live captures and the weighing of seal pups? Yes, I would like to be included, of course. Oh you need a bioacoustician? I just happen to be one. I just need a few more weeks to improve my Italian.

Weddell Seal Mom and Pup.  My new favorite animal.  (Photo credit Nicoletta).
Weddell Seal Mom and Pup. My new favorite animal. (Photo credit Nicoletta).

I’ve mentioned in the past that every scientific mission is accompanied by a personal one. When I traveled to Glacier Bay this past summer one of my primary goals was to build a relationship with the landscape and the community. I did not have the same expectation of my time in Antarctica. I admit I’d cast the landscape as a barren bedfellow, and anticipated my time on the ship to be filled with solitude. I can happily admit that I was wrong. Relationships are forged in unlikely places, professionally and personally. While I thoroughly anticipated feeling scientifically awakened and inspired by the scenery, I’m pleased to report that it was in the conversations with the passengers on board the ship that I truly began to build collaborations.

But enough on the value of science and relationships… I want to tell you about Christmas.

DSC01836
Amico Mio, Roberto. Cuciniamo la spaghetti di Natale. (My Friend Roberto and I cooking Christmas spaghetti).

Christmas in Korea is celebrated largely on Christmas Eve — which was amenable to our schedule given that we were slated to arrive in Lyttelton, NZ on Christmas morning. Christmas Eve we were treated to an early Korean Christmas dinner, complete with wine and roasted nuts for a bit of flair. Our five o’clock meal, however, was complimented by a midnight meal. The chef onboard the R/V Araon graciously agreed to turn over his kitchen (and his pantry) for the evening so that we might make Christmas Spaghetti. Let by Chef Roberto (though admittedly I may have tried to mutiny once or twice) we cooked three dishes, complimented by Italian cheese and salami courtesy of Mario Zucchelli Station. The evening was completed once Santa Claus himself (Kiwi Engineer Chris) made an appearance, passing out candies, and asking us all what we wanted for Christmas.

It was glorious, and festive, and fitting for our last night on the ship.

I realize that unlike previous posts that this entry lacks much sincere scientific merit. However, one of the things that was emphasized on the ship, and throughout my training as an ecologist, is the importance of balancing work and life. Nowhere does this seem more critical than transiting to and from the bottom of the world, where the lines are blurred. Following Christmas we docked in Lyttelton Harbor near Christchurch, New Zealand marking the end of my journey through the Southern Ocean. Bittersweet.

Don’t fret though, fearless readers, There’s one more post before I end this story, because New Zealand was glorious.

 

Your (former) Antarctic Correspondent,

Michelle

 

 

I’m happy to report (I’ll be it a bit late) that the OBH (Ocean Bottom Hydrophone… for those of you just joining us) has been safely recovered! It is now snugly packed on board the R/V Araon and prepared for transport back to NOAA. Our first attempt to contact our instrument was a success (we sang to it, it sang back… how I love acoustics); however, the glorious sunshine that graced us during our recovery was unfortunately accompanied by 45-knot winds. The ship, which is large and generally stable, pitched in the wind. Our instrument is robust, but not unbreakable, and requires hoisting onto the deck via an onboard winch once it appears at the oceans surface. This translates to a lot of potential swinging – particularly in choppy seas. As usual the crew of the R/V Araon did not disappoint. They recommended a delay, and the recovery was postponed.

Brett and his "beard-cap".  Who says scientists don't have a sense of humor?
Brett and his “beard-cap”. Who says scientists don’t have a sense of humor?

What was not postponed, however, was our end of research cruise celebration. Despite the delay our research team was treated to a feast! Korean wine, sashimi and tempura, even chocolate cakes were served. We ate until we could not eat any more, and made merry in the mess hall until our sides split from laughing (ok, there may have been some dancing in the lounge as well, a cap with a beard knit into it, and Christmas carols). It was a glorious way to celebrate the ‘almost end of cruise’.

While the following day’s 8 AM recovery seemed early given the night’s festivities, the entire operation went off without incident. Our instrument appeared as predicted after the release command was sent, and the crew deftly maneuvered her onboard (despite another pick up in the wind). For me, the moment was one of blissful relief. This was my first large-scale recovery (of what I hope will be many). This trip was a gift and an opportunity, to successfully accomplish my mission was glorious. Further, the anticipation for seeing the instrument when she appeared from ~1000 m depth had been building for months. When it was finally placed on board I completely forgot about the lack of sleep. It was amazing. I was struck by how little bio-fouling took place (although admittedly the instrument was well beyond the photic zone), other than a thin film and what appeared to be a handful of deep water limpets.

Hydrophone recovery attempt #1- notice the white caps in the background?
Hydrophone recovery attempt #1- notice the white caps in the background?

By comparison, the OBS (Ocean Bottom Seismometer) recovery was significantly more dramatic.  Two OBS’s were deployed last year, both locations are currently covered in ice.  To recover our instruments the R/V Araon’s ice breaking capabilities were put into full use.  The ship was used to break, and then clear, a hole in the ice directly above where the OBS was deployed.  Nature abhors a vacuum, so as soon as the ice was cleared (which took hours) it would quickly drift back into position.  Despite this, the ship’s captain managed to clear an opening in the ice about the size of a small lake.  this required copious amounts of circular ice breaking, the ship track lines were dizzying.  The operation, however, was brilliantly executed.  The OBS was released directly into the center of the clearing (much to our relief).

Overall we successfully recovered one OBS, one OBH, deployed ~20 CTD casts (more if you consider that at times we deployed two separate instruments), and we successfully deployed to 500 m oceanographic mooring. Most of this was done in close proximity to the Drygalski Ice Tongue, which lived up in full to its reputation.

DSC05263
The Drygalski Ice Tongue, just prior to the OBS recovery

 

While our team was able to ride the euphoria of a successful mission for some time, I must admit the days following the end of the cruise were hard. Brett, the Kiwi scientist from NIWA (National Institute of Water and Atmosphere) joined us on the Araon for the duration of the cruise, but would not sail back with us. Similarly to our Italian colleagues Brett left via helicopter and disappeared across the ice. It strikes me as somewhat ironic that in a landscape that exists at such a large scale, that relationships here are formed so quickly. It’s a silly metaphor but I suppose this is not altogether unlike the ice  itself, which freezes quickly (pancake ice anyone?), but has the potential to stay intact for many years. In any case we returned to the mouth of Terra Nova bay and bid a rushed goodbye to our dear friend. I hope he makes it home in time for Christmas.

Our research team (minus photographer Brett) enjoying Korean barbeque.
Our research team (minus photographer Brett) enjoying Korean barbeque.

As for the rest of our team? We’ll spend Christmas on the ship. We should be back in Lyttelton, New Zealand by December 27th, and will disembark shortly therafter. For now, we have a new group of Korean scientists on the ship. They have been at Jang Bogo for various durations, some only a week, others as much as a year! Additionally, we have a new group of Italian scientists from Mario Zuchelli Station who are in transit home. I’d thought my Italian lessons were over… I suppose we’ll have to see.

 

More on Christmas and the northbound transit soon!

 

Your Antarctic Correspondent,

Michelle

 

**Disclaimer — This post was written a few days ago… but due to lack of internet I wasn’t able to post it. Stay tuned for notes on how Christmas turned out, and what our return to New Zealand looked like**

 

 

 

 

…A question that sometimes occurs when I tell people that I study the sounds of the whales. Still, my very close non-scientists friends do think that I try to talk to dolphins. This might not be accurate since my research equipment and purpose of my study do not allow anything like this, but essentially I do try to spy on their “conversations”.

dorry
Meet Dory, a (fictional but funny) colleague of mine

One of the functions of sound in dolphins and whales is communication. Communication is a keyword in bioacoustics and is defined as being “the transmission of a signal from one organism to another such that the sender benefits from the response of the recipient”. There are different purposes that it serves living organisms and different ways to express it.

A primary purpose of communication is to attract and repel. Plants use chemical signals that get transmitted through the air or their roots, people use the smell of pheromones to attract each other, and skunks use the same signal to repel. Dogs and foxes use face and body gestures to express submission and aggression. Elephants use touch interlinking their trunks as a means of close communication. Especially for attracting mates, vision (peacock elaborated feathers) and sound (bird songs) are both very useful.

 

Do you get the message?
Do you get the message?

Though the most common well-known animal communication signal heard by humans is the bird song, there are all sorts of animals that rely on their hearing and vocal ability to succeed and survive. Whales, the modern giants, appear to be experts in the art of sound communication with different species each having their own sounds. They use these sounds to navigate, locate and capture prey, communicate about the environment and the availability of food or predators, and to attract mates or repel competitors.

Whale chat #alltheycareforisfoodandromance
Whale chat #alltheycareforisfoodandromance

http://www.michw.com/

Such acoustic signals may be (a) instinctive that is genetically programmed or (b) learned from others through social learning.

Social learning is the information moving through communication from one organism to another. This information then passing on is what we call culture. Without this transfer there would be no life, no evolution, no biology. Culture is why we have the Parthenon, the South Park, boy bands and the MIT. What you read, like this blog, that you may pass it on is culture.

Random example of culture: the Parthenon
Random example of culture: the Parthenon

Cultural transmission, the social learning from conspecifics is believed to occur in a number of groups of animals, including primates, cetaceans and birds, elephants and bats. Cultural traits can be passed through different paths.

Cultural transmission can be done vertically: from parents to offspring, obliquely: from the previous generation via non related individuals to younger individuals, or horizontally: between unrelated individuals from similar age classes or within generations.

cultural transmission
3 families of sperm whales and how they get their culture transmitted

Of the several types of social learning which have been recognized, imitation is particularly significant for the propagation of culture. Humans can imitate new sounds and learn how to use them correctly in social situations. This is called vocal learning which is considered to be one of the foundations of language.

My favorite example of imitation in the animal kingdom is the lyrebird of S. Australia, which has an unbelievable capacity for mimicry. During the breeding season in South Australia, the male lyrebirds spend six hours a day calling, doing their best to attract the ladies. They have the most complex syrinx (vocal organ in birds), and they make a remarkable use of it!

I know I am repeating myself since I have posted a video of the lyrebird before  but this time the famous mime has enriched its repertoire with more sounds that will make you wonder how and why… Check out the lyrebird’s latest hits here.

Next I would like you to meet Luna, another excellent mime; Luna is a male orphan killer whale. Luna has been all alone since the age of two, living off the coast of Vancouver Island, Canada. There, in 2001, Luna became popular for getting in close proximity to people, interacting with local boaters and perfectly mimicking boat noises. A tragic result of this interaction was the tragic death of Luna in 2006 due to a tugboat collision!

Culture, through social learning, has been studied and papers have been published mainly in only four species of cetaceans: (1) the humpback whale, (2) the sperm whale, (3) the killer whale, and (4) the bottlenose dolphin.

Humpback: the Diva

Humpbacks are the most popular singers of probably all the non-human mammals. They have even released CDs with their songs ! When we think of whale songs the humpback is what we have in mind. They represent the best understood horizontal culture of cetaceans.

The males produce series of vocalizations that form songs used in sexual selection (through mate attraction and/or male social sorting). Their songs are very complex and can be heard mainly in breeding grounds and whales can hear them up to 10 km (about 6 miles) away. Whales sing the same song for hours and hours. Populations within an ocean basin have similar songs with this similarity dependent on geographical distance between populations.

Humpbacks can change their song after hearing other songs. A terrific example takes place in the southern ocean where the songs are horizontally transmitted from eastern Australia in the west across the region to French Polynesia in the east. The songs have been documented radiating repeatedly across the region from west to east, usually over a period of two years. The result: soon the song that was recorded on the east region is now fully replaced by the west region hit. This seems to me to be really similar to our music culture transmission.

Earworm!
Earworm!

Killer whales: The Intellectuals

The Sea Pandas (as some marketing teams have proposed renaming killer whales to help promote their conservation) are highly social.

The cheeky ones
The cheeky ones

The populations off the west coast of Canada have been studied for decades and are divided in different ‘‘types’’: the residents, transients and offshores. These 3 different types have diverse feeding preferences and subsequent vocalizations. The residents feed on fish and are highly vocal, the transients feed on marine mammals and are much quieter to not reveal their presence to their prey that has good hearing abilities. The offshores are also highly vocal and feed on sharks and rays.

Picture1
Extroverted vs. Introverted (Resident vs. Transient)

Killer whales that are separated by great geographical distances have completely different dialects. An analysis of Icelandic and Norwegian killer whale pods revealed that the Icelandic population made 24 different calls and the Norwegian whales made 23 different calls, but the two populations did not share any of the same calls.

Besides dialects, killer whales have been shown to learn vocalizations from other species. Yes, they speak foreign languages! At a water facility, where they socialized with bottlenose dolphins, they changed the types of sounds they made to resemble those of their neighbors.

If I was not so enthusiastic about the sperm whales, killer whales would definitely receive most of my scientific admiration. They have evolved outstanding sophisticated hunting techniques and their vocal behavior is impressive, being specific to certain groups and passed across generations. Killer whales are great examples of cultural organisms.

Keeping these animals in captivity sounds like  even less of a good idea now, right?

Bottlenose dolphins: the Eponymous

Bottlenose dolphins are well known for their signature whistles. They have stereotypical signatures attributed to each individual that work as their name. This helps to maintain contact between mom and calf or between individuals in a group. Each bottlenose dolphin has its own unique whistle and it uses it to broadcast their location and identity to others.

3 different whistles from different individuals. Hard to call a dolphin by its name...
3 different whistles from different individuals. Hard to call a dolphin by its name…

Most of the characteristic whistles are usually fixed for all the lifetime of the dolphin. However in some cases, when a male dolphin leaves mom and joins with other males to form an alliance (which might last for decade), their distinctive whistles converge and become very similar. So the longer they stay together the more similar their whistles become. Based on the same reasoning, I can’t understand why my English accent is still the same after three years living in USA!

Sperm whales: the Bignose

Sperm whales are among the loudest animals on Earth, and my favorite (not sure if I have already mentioned my preference). They owe this to their huge nose which functions as a massive click producer. They also have the biggest brain. They produce a variety of loud and distinctive types of clicks for different functions. One of these types of vocalizations is called coda. It is stereotypical patterns of clicks resembling Morse code, and frequently serves social purposes. Codas are usually heard when the group of animals rest or socialize at the surface of the ocean. Similar codas used by one group may help maintain group cohesion after its members are done feeding.

hanging
Chilling after dinner

It is thought that each sperm whale has its own individually distinctive coda pattern and it has been reported that groups within one geographic area tend to have more similar codas than groups from further away. The “five regular” call is one of the few codas that all sperm whale groups around the globe use in their regional dialects; while the “plus one” type seems to be specific to Mediterranean inhabitants. These vocal behaviors are transmitted vertically, and loosing members of the population may seriously impact the transmission of this cultural trait that carries important information content vital for the survival of the population.

The "regular 5" and the "plus one" codas
The “regular 5” and the “plus one” codas

 

 

We don’t need to watch Interstellar to search for life in different solar systems and unknown worlds. Like Anne Stevenson said: “the sea is as near as we come to another world”.  The ocean is vast largely undiscovered. We can consider the open sea an intriguing new wet universe. In interstellar, communication or miscommunication played an important role and turned out to be vital for rescuing the world. Father and daughter that could not directly speak to each other used binary code to transmit their messages through different dimensions. The cetaceans also transmit their messages through codes that we try to identify and understand. It is vital for their world to be able to use these sounds to communicate. You can correctly guess that we are using their home for our anthropocentric purposes and we are being very noisy neighbors, polluting their ocean and impacting their survival. This can be changed… If you are looking for New Years resolutions…

Like in the movie, it’s not Them that will help us save the world. No external factors are required, all the power is in us!

tumblr_nerqcpMdq71r02d8do1_500

Happy, quiet and peaceful holidays to y’all!!

This post was inspired by the presentation that me and Selene gave on Saturday 12/13/2014 for the Oregon Chapter of the American Cetacean Society entitled: “Do you speak whale?”.

Soundbites is a weekly (biweekly, occasionally) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound. Sorry I missed last week. End of term caught up with me. 

Female katydids who don’t vocalize are more at risk of predation than vocalizing males: it’s been assumed for a long time that signaling to attract a mate also attracts predators (it’s certainly true in frogs). This study questions that. The authors found that flying female katydids were caught by bat predators far more often than still vocalizing males.

Shipping noise causes stress and therefore impacts immune response in lobsters: another tale for the “animals we don’t think are affected by anthropogenic noise but actually are” file. Lobsters showed decreased immune response when they were exposed to high levels of shipping noise, which has implications for the fishing industry and the health of lobster stocks.

Fun link of the week: those who have been following this blog for a little while know that I’m a big fan of Lord of the Rings and of movie sound design. Well, today marks the release of the last Hobbit Film, The Battle of the Five Armies. In honor of that, the video in this link’s week walks you through the sound design of the films.

For the first time in the last 13 hours the electronic plane icon that has been flying across the digital screen in front of seat 41C on this United Airlines international jumbo jet is traveling above land. We are flying over a small island chain to the northeast of Australia as I type this; the capital of Port Vila is marked with a white dot. Prior to this the plane on this screen flew over nothing but vast Pacific Ocean. We land in a few hours in Sydney. It’s my first trip to Australia, and a short one at about 2-hours before I catch a flight to Christchurch, NZ where the R/V Araon will be docked.

Getting to Antarctica takes a long time.

Three flights totaling ~20 hours of flying time across four airports and three countries, and that’s just to get to New Zealand. From there I’ll board the KOPRI ship the R/V Araon for a ~9 day sail to the Ross Sea. In a world where I can transit continents in a day, that it takes over a week to reach Antarctica is both satisfying and daunting. It really is that far away, but it’s Antarctica… shouldn’t it take a long time to get there?

I don’t have a lot to report yet. The days leading up to the trip ended with a flurry of activity. Equipment had to be shipped, driven, and then flown around the world. An early evening training session with PMEL’s Matt Fowler got me up to speed on what’s expected of me, what I’ll actually be doing on the ship, and why the expedition is happening at all.

The cruise is multi-purpose; resupplying the Korean Antarctic Base – Jang Bogo Station – is one of the expedition tasks. As is collecting valuable data on conditions near the Dragovski Ice Tongue, and recovering various instruments deployed last year to study seismic activity in the region. But my role is to recover an Ocean Bottom Hydrophone, or OBH for short, from approximately ~1000m (3300 ft) beneath the cold ocean waves for the Pacific Marine Ecology Lab (PMEL). PMEL and KOPRI are working together to improve our knowledge of ice dynamics in the Southern Ocean.

The seemingly impossible recovery task is accomplished by chirping. We’ll be using something called an acoustic release. What that means is I have a piece of equipment on the deck of the ship with an acoustic element that gets slung overboard to ‘chirp’ into the water. The right chirp, at the right frequency, and the right timing, will wake up an element built into the hydrophone on the ocean bottom. If it hears the right signal, it chirps back a predictable reply. It’s all very charming to hear, and slightly more technical than I’m describing but as Matt said when he was training me on it “it’s technician proof”. Once contact is made with the hydrophone, and I confirm that the signal it’s responding is in fact our own, I can send a release command that will theoretically release the hydrophone from it’s bottom mooring allowing it to float to the surface of the water (should take 5-20 minutes, Matt tells me).

It all sounds fairly straightforward and I’m assured that the technology is sound. Will it work? I don’t know yet, it should. But it’s going to take me another 9 days to get to the Ross Sea, so you’ll have to standby while I get off of this plane, onto another one, then into a taxi, and onto a ship, then sail south south south. This may take a while.

 

-Your Antarctic Correspondent-

Michelle

Soundbites is a weekly (biweekly, occasionally) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound.

Bill morphology shifts along with fundamental frequency in urban birdswe talk a lot in ORCAA about the way animals change their vocalization in response to outside pressure, but there are physiological constraints on the changes that can be made (for example, there’s no way I can sing bass, although I can get to tenor if I warm up). Birds in urban, disturbed areas had longer, narrower bills, which might help them get food at feeders, but actually makes it harder for them to vocalize at the higher frequencies that are more advantageous in noisy areas.

40-million-year-old protowhale was sensitive to low frequency soundI’m a little bit of a paleo-nerd, so this was pretty cool to see. They looked at CT scans of the inner ear structures of this fossil, Zygorhiza kochii, and compared it to current mysticetes, and found that they were similar, indicating Zygorhiza was probably also sensitive to low-frequency sound the way our current baleen whales are. This implies that the order developed with a sensitivity to low-frequency and toothed whales’ high-frequency sensitivity came later.

Baird’s beaked whales are affected by sonarbeaked whales are some of the most mysterious ocean-dwellers, and we know little about their life history, behavior, or response to noise. Using acoustic tags, these researchers found that a Baird’s beaked whale displayed unusual diving behavior after being exposed to sonar.

Fun link of the weekI’m taking next week off because it’s the day before Thanksgiving here, and I’ll be traveling and then spending four straight days eating my family’s amazing cooking. So this week I give you a video about turkey vocalizations! Bonus: if you have energy, a paper cup, some string, and a paperclip after gorging yourselves on turkey, you can make a simple turkey-ish call.