Wow! Summer winded down quickly. It felt like a lot of time spent writing, some exciting and stressful glider piloting, and I wrapped it up with 2 weeks on the water in Southern California working on the SOCAL BRS project. (You can read a public summary of the project here).

IMG_20150817_065223118
Pretty morning at Santa Catalina Island

I’ve talked about this project before, and this was my 4th summer on the R/V Truth. This leg ended up a bit frustrating in the fact that the animals were more difficult to find and work with than past years. We didn’t observe the distribution of whales we typically do, and we suspect this has something to do with the abnormally warm waters off Southern California this summer.

For example we barely saw any Risso’s dolphins, where typically there are tons around Santa Catalina Island. And the blue and fin whales typically found feeding right in the LA shipping channel weren’t where we expected them. Instead we found them quite a bit further offshore near Santa Barbara Island. AND we saw schools on schools on schools of yellowfin!! (I think……I may edit this in a day or two…anyway I’d never seen so many leaping fish!) EDIT: Yellowfin tun and maybe some small bonitos and maybe some bluefin.

Always Learning

For me the trip was still a great learning experience. I got to use some new tools and learn some new skills, including running the sound propagation software we use in setting up a CEE (Controlled Exposure Experiment), running the sound source that projects the sound playback, and deploying and recording from sonobuoys, little one-time use floating recorders designed to listen for subs, but also work for whales.

IMG_20150820_125325385
Mapping how sound likely propagates through the Southern California Bight in August.
IMG_20150820_184524193
My acoustic set up. Sonobuoy detector, sonobuoy recorder, and directions of course.

 

 

fd815a259bd582c6c984efad21e9519b
People started to refer to me as Jonesy. I embraced it whole-heartedly.

 

 

What’s that, you say? Has Soundbites returned? Indeed it has! After a long hiatus for the summer, Soundbites is returning this term to provide you with all the latest and greatest bioacoustics news, bite-sized! 

Phantom road experiment reveals noise degrades habitatman do I like this experiment. As all of the ORCAA students could tell you, sometimes it’s hard to differentiate the effects of noise from general habitat degradation. These researchers set up a “phantom road” made of speakers and found evidence of avoidance and decreased body condition in birds.

Gorillas change vocalizations based on audience effects, not environmental factorsI don’t get to write about gorilla vocalizations very often! These researchers wanted to test the acoustic adaptation hypothesis to see if both mountain and lowland gorillas changed their vocalizations to maximize transmission in their cluttered (physically and acoustically) environment. Instead, the gorillas changed their vocalization based on social cues, like nearest neighbors and visual separation.

Traffic noise impacts zebra finch embryos and nestlingsthe authors set out to distinguish the impacts of noise from other habitat variables by using captive zebra finches. High-noise groups had higher embryo mortality and slower nestling growth, and noise also was found to possibly exacerbate stressed animals further and contribute to reduced parental care.

Fun link of the weekacoustic scientists recently shattered the world record for longest echo. In Scotland, there are long tunnels that used to be used for oil storage. A gun shot echoed for a ridiculous 112 seconds!

I spent this past week on Cape Cod coordinating the retrieval and redeployment of the Noise Reference Station mooring in Stellwagen Bank National Marine Sanctuary. Last October we deployed the hydrophone (NRS09) for the first time at our long-term site, and this year we were faced with the challenge of retrieving a 700 lb mooring without any surface expression. Luckily, we had a great weather day and the process went off without a hitch!

NRS09 coming up.
NRS09 coming up. (Photo: Onye Ahanotu)

As soon as we brought the lander back on board we got to work cleaning on the (small amount of) biofouling that accumulated over the past year. I also needed the prepare the acoustic release for re-deployment. In order to retrieve a mooring without any surface expression, we needed a system that would allow us to pull up the lander from the ocean floor; an acoustic release is the perfect solution. To make the re-deployment process easier, NRS09 was designed to use a release that can be easily re-assembled and re-used for successive deployments. Below I am taking release mechanism out of the housing to replace the battery.

Replacing the acoustic release batteries.
Replacing the acoustic release batteries. (Photo: Onye Ahanotu)

Once we had the lander on board we swapped out the hydrophone and prepared the lander for re-deployment. We had to be very careful to secure any pieces that could create noise (and interfere with the ocean noise we are trying to record).

Attaching the replacement hydrophone.
Attaching the replacement hydrophone.
Preparing the lander for re-deployment.
Preparing the lander for re-deployment. (Photo: Onye Ahanotu)

 

 

 

 

 

 

 

 

 

 

Ready to re-deploy NRS09.
The whole crew ready to re-deploy NRS09.

Once the lander was cleaned, acoustic release re-assembled, and new hydrophone secured we were ready to re-deploy NRS09 in Stellwagen Bank National Marine Sanctuary for another year.

Sending NRS09 back into the ocean.
Sending NRS09 back into the ocean. (Photo: Onye Ahanotu)

Since getting back to Corvallis, the glamour of my research has decidedly declined. However, as you may know, only a small part of bioacoustics research takes place in the field – mostly it takes place in front of a computer. And that’s where I am now.

This month I’ve been looking through some recordings from three different deep-water Atlantic mooring sites to compare drivers and levels of noise. Passive acoustic archival research is different from other types of data collection because we (the researchers) are not out in the field during recording. Our instruments record all sounds and then part of the analysis process is looking and listening to see what went on. Paging through years of recordings can be a tedious process, but from time to time I find something unusual and exciting like this noise recorded on Halloween night!

Halloween Noise
Halloween noise!

 

GEMS girls in action!
GEMS girls in action!

I did get out of the office for an afternoon this week to talk to the Girls in Engineering and Marine Science Camp (GEMS) hosted by the Oregon Coast STEM Hub. The two-day camp was organized to expose middle school girls to STEM-related careers. I spoke to the group towards the end of the camp, and despite being exhausted from two full days of science and an aquarium sleepover, they were a great audience!

The pleasure from working during the summer is certainly underestimated.

You can ask any student from our ORCAA Lab to confirm. Michelle currently sleeps next to breathing/breaching humpbacks in Alaska; Samara was surveying on a grandiose NOAA vessel doing the infamous turtle rodeos; Selene is preparing for a Californian whale tagging survey-cutting edge marine mammal work; Danielle is enjoying the process of fulfilling and submitting a publication after having spent months with cute little singing frogs.

However, I do admit that not everyone’s summer work can be as XXX (exotic, exciting, exquisite) as a marine scientist’s / bioacoustician’s can. Fortunately, the seas and the oceans of the world remain largely unexplored waiting for us to discover during our summer expeditions.

Adventure is clearly, what a scientist is after. In my case, the adventure starts on a boat while on a dolphin/whale quest, looking for marine life, reading the weather and the surface of the sea, translating the animals’ behavior or the sounds they make, getting the right shot of the dorsal fin or the fluke. However, excitement can also be derived while in the lab, from a simple statistical analysis. There is a certain type of agony during the testing of a model and while anticipating different relationships between variables measured and observed, or estimating population sizes.

Part 1
My summer 2015 adventure takes place in the island of Zakynthos, in Greece.

Close to the (Greek) West Coast
Close to the (Greek) West Coast

Unlike last year, the Ionian Sea has been the setting for my 2015 fieldwork. The Ionian embraces the western part of Greece, is a sea that is shared with Italy, and is home to the group of islands called Eptanisa (=SevenIslands). Corfu, Lefkada, Kefalonia, Zakynthos, Paksoi, Kythira, Ithaki, are the biggest jewels laid on the clear turquoise waters of  the Ionian. Green themselves, the islands are covered with luscious pine forests and are a spectacular destination for every yachtsman (or sea-camper) that respects himself.

Zakynthos, where my story sets, is the favorite hatchery for the Mediterranean loggerhead sea turtle. More than 1200 sea turtle nests are found and monitored every summer around the beaches of Laganas Bay. The mother turtles, just like the hordes of tourists, love the long and wide, white fine-sand beaches and lay there their eggs. Since this area is of high ecological importance for this endangered species, the last 16 years, at this corner of the world it was established the National Marine Park of Zakynthos for the conservation of this living “dinosaur” species (sea turtles first appeared 180 million years ago while dinosaurs were still alive).

First fossil of a sea turtle (Archelon ischyros) 4.5 m long, found in N. Dakota, exhibited in the Yale Peabody Museum, Yale University
First fossil of a sea turtle (Archelon ischyros) 4.5 m long, found in N. Dakota, exhibited in the Yale Peabody Museum, Yale University

 

Oh sea turtles! They have been my very first marine-species-love (first loves never die) and I spent several years working on the conservation of these animals. It has been heart-warming to meet them again.

Besides the sea turtle population status, the Marine Park, the governmental body that manages the protected area, is interested in assessing the status of all marine life within this habitat. Thus, they funded a big study that encompasses the benthic communities, fisheries, megafauna, water quality, shore erosion and the monitoring of all the factors that determine the conservation status of a marine area.

Together with a splendid team from the University of the Aegean and the Department of Marine Science, we designed and implemented a field study to assess the conservation status of the cetacean species encountered within and around the Marine Protected Area (MPA).

Meet the team
The project manager, with whom we designed the fieldwork, is Vasilis Trygonis. Vasilis has a mighty mind and organizing skills that made the project happen against all odds. Vasilis is an engineer that can get into anything and fix everything that requires fixing. Such a pleasure to work with this inspiring mind.

Vasilis
Vasilis

Our skillful captain, Olympos Andreadis, comes from the island of Chios, a place that produces the finest Captains in the world. Olympos flew us on the waves and elegantly drove us close to the dolphins. He would also provid a surprising amount of snacks while at sea!

Captain Olympos
Captain Olympos

Sevi Kapota, our MSc student, field assistant, and dolphin enthusiast contributed with her bright character and her excellent data entry qualities. On top of her photography abilities.

Sevi and her pretty smile
Sevi and her pretty smile

The captain came with his vessel. We had a small zodiac that typically hosted four people and equipment. By equipment, I mean loads of water and snacks, sunscreens, hats, sunglasses, four different cameras, binos, GPSs, data loggers, and 2 sets of hydrophones.

We spent a week at Zakynthos. The warmest week of history. At least my history.

Our days would start while it was still night. The alarm was going off at 5 am and we were on the boat by 6 am. While the sun was not yet up the sky, burning our skin and dazzling our minds. Besides being cooler, during the early morning hours, the sea tended to be calmer and welcoming to our objectives. We had a natural and obligatory 2 pm threshold at sea. A local northwesterly wind would force us out of the water as soon as the sun was unbearable. Thank you God Poseidon!

For our visual surveys, we split the horizon in two and the visual observers shared a view of 180 degrees. During every dolphin encounter we would record in detail: the group consistency, the number of individuals and species, behavior, group direction and speed, and demographic info.

IMG_1798
With Eva, our visual observer guest star. Last day smiles

At the same time we also practiced our auditory ability with the marvelous (and my personal very favorite) technology of dipping hydrophones. We would systematically stop the boat, turn the engines off, throw the hydrophone into the water and listen to the deep blue. Sometimes dolphin voices would reach my ears in forms of whistles and clicks. We often used this method as a trustworthy alarm that what we are seeking is not too far away.

On duty
Me on duty

In the meanwhile we were also recording the weather conditions (cloud cover, sea state, wave and swell height, wind speed, glare, etc) once per hour, or every time the weather would change, since it’s a factor that affects our ability to visually detect the animals in certain distances. On top of that, we implemented a fine scale recording of all anthropogenic pressures to the environment such as litter, fisheries and shipping activity, oil or other kind of pollution, and anything that could be a threat to marine life.

In contrast to what people had previously told us we had several sightings and acoustic recordings of big groups of dolphins. Striped dolphins seem to surround the deeper offshore MPA. Also they surrounded our boat dozens of times to show off their acrobatic skills and their radiant elegance. Every sighting was a joy for the eye and the soul and enriched our knowledge for the cetacean presence in that area.

One of our aquatic new friends
One of our aquatic new friends

Besides the boat surveys we deployed two bottom moored hydrophones in distinct habitats within the MPA. These hydrophones will be continuously recording for a few months and we hope that the acoustic data will give us a better idea of the variability of the dolphins’ presence around the specific locations. Fingers crossed for the equipment to wait for us where we deployed it!

During one of the deployments, while exploring the underwater topography, a loggerhead sea turtle swam with us checking out our interference with her home. She approved of the hydrophone and swam away on her jellyfish-quest!

Part 2
Now the fieldwork is paused, until probably September, and I am stranded at the island of Serifos visiting my family and rethinking heat waves. I am finding the best office I could ever have without walls suffocating me. Sand on my feet, sea in my eyes, and deafening cicadas filling my ears. The ultimate inspiration for my research, my work and my professional motivations.

Summer office
Summer office

One does not come to the sea for niceness. One comes for life.

Happy sea days (summer)!

-Niki

 

links to other blogs!!  Like this one: LADC-GEMM

Lately I’ve been doing some “field work” although that is not nearly as glamorous as my labmates Michelle and Samara are doing right now. I am piloting a glider in the Gulf of Mexico for a monitoring project around the area of the 2010 Deepwater Horizon oil spill. This is an awesome project because it is using three types of passive acoustic monitoring systems: gliders, autonomous surface vehicles (that look AWESOME) and bottom moored hydrophones. However, me piloting means staying in Oregon with a strong internet connection and doing all of that from my laptop, so I don’t have any cool pictures, or fun field stories. This deployment has been going very smoothly, compared to the test flight, knock on wood.

Anyway, Sara Heimlich, of the OSU/CIMRS Bioacoustics Lab, has been maintaining a great project website and I encourage you all to check that out for more detailed info…and cool field photos.

Enjoy!!

Between traveling to Alaska with Michelle and wrapping up spring term, this summer snuck up on me. A week after turning in my statistics final (yay!) I was on a plane headed to Boston. After a happy and relaxing weekend spent reuniting with friends on Cape Cod, I headed to Newport, RI (so many Newports!) to board the NOAA ship Henry Bigelow for an exciting stint chasing turtles by day and recording whales by night. Of course, the best-laid plans do not always work out and while all of the other typical delays seem to be under control (the boat works and the crew is healthy), the weird weather saga of southern New England continues and multi-state tornado warnings are keeping us alongside a little bit longer.

IMG_4442
The NOAA ship Henry B. Bigelow!

The first reason we are headed out on the Bigelow is to tag sea turtles. Chief scientist, Dr. Heather Haas, and her colleagues are interested in finding out how accurate visual surveys are in tracking numbers of sea turtles. To find out, we the science crew will work together to find as many sea turtles as we can and bring them aboard to get outfitted with satellite tags. Hopefully, the tags will give us information about how much time sea turtles spend at the surface (versus at below it) and that information can be used to better approximate population sizes. But that isn’t really why I am onboard.

I am here as a passive acoustics monitor, operating the Northeast Fisheries Science Center acoustic group’s towed array. Our towed array is a series of 6 mid-frequency and 2 high-frequency hydrophones wired together and suspended in an oil filled watertight tube that we drag behind the boat to listen to marine mammals in real-time. Becuase there are multiple components in the array we can use it to record and localize animals as we travel along a track line. If you want to know more about hydrophone arrays, Michelle Weirathmueller has an excellent write-up on her blog, The Waveform Diary. Check it out here: Hydrophone arrays, FTW!

IMG_4438
Our array set-up ready for deployment. The array is coiled on the wooden spool and tow cable is on the net reel.

On this cruise, my friend Annamaria and I will be working with the array at night when it is too dark to search for turtles. We are hoping to record beaked and sperm whales. Since we did not leave the dock today, we were lucky to have a stable platform to get set-up. Becuase a lot of electronics are required for us to an acoustic signal from an animal onto our computer screen, we usually spend the first day at sea troubleshooting…

One of my first projects of the day was to figure out why one of the two hydrophones I was trying to listen to wasn’t working correctly. As usual, the solution is to re-think our wiring set-up. Here I am looking for the connector I need.
IMG_4434 2
I was having trouble finding the right part so I decided to take a break and eat some candy dinosaurs. On the left monitor, you can see that the top half of the screen is blank…not what I wanted to see. Luckily I was eventually able to find the part I needed to fix the problem.

Thankfully we worked out a lot of technological kinks today and hopefully the weather will clear up and we will be on our way to find the turtles and whales tomorrow morning!

IMG_4436
Modeling my survival suit during safety drills this afternoon.

Soundbites is a biweekly feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound. 

Multimodal signalling in redwing blackbirds in noisy situationsmore bird stuff this week to start off. Redwing blackbirds attract mates both acoustically (with songs) and visually (by showing off their fancy red shoulders). The visual signal was thought to be a sort of backup for the acoustic signal. In noisy conditions, these authors found that birds will change their calls but not their visual signaling, implying that the two signals are separate.

To be loud or not to be loud, that is the questionFemales of many acoustic species tend to prefer their males loud because being loud requires energy. Or so we thought! Here the authors found that singing loudly in zebra finches is constrained more by social context than it is by energy expenditure. You should click on this link if only for the diagram of the zebra finch inside a respirometry mask. It’s adorable.

Fun link of the week: you guys know I love the science side of YouTube, right? I’ve made no secret of that. So for this week’s fun link, I give you a video from Joe Hanson of It’s Okay To Be Smart about the loudest sound:

(also, look! I finally figured out how to embed videos!)

Soundbites is a weekly (biweekly, mostly) feature of the coolest, newest bioacoustics, soundscape, and acoustic research, in bite-size form. Plus other cool stuff having to do with sound. 

Acoustic “sonic net” may deter invasive European starling communicationnoise isn’t all bad. Sometimes it allows us to get rid of things we don’t want, like invasive species. Here researchers used a “sonic net” comprising of frequencies overlapping with starling communication frequencies over a feeding patch. Birds under the net didn’t respond to alarm calls, which is promising in using acoustics as a deterrent for this species.

Singing higher doesn’t guarantee success for urban birdsblame the surplus of bird literature on springtime, I guess. In the bioacoustics world we often talk about the seminal “Birds sing at a higher pitch in traffic noise” paper; here, the author of that paper addresses how that affects survivorship. Turns out there’s no correlation between success in an urban environment and singing at a higher pitch.

Traffic noise masks communication in freshwater stream fishI’m just going to leave this one here. Traffic noise can impact entire watersheds. Anyone interested in making quieter cars yet???

Fun link of the week: in the grand tradition of fun links of the week having nothing to do with sound, this one goes out to Selene, who defends on Friday. Good luck, Selene! You’re going to do awesome! (and clearly, bring a sword.)

(image courtesy of xkcd)

 (What marine mammals have to do with gas exploration and how can you help?)

Biking is cool for so many reasons.

Benefits-of-biking

 

 

 

 

Besides all the personal benefits, mainly related to health advantages and financial savings, there is also an immense ecological value to it. Since bikes run on fat (of the person that rides them) instead of oil, it has zero emissions of CO2 to the atmosphere, hence reduces one’s carbon footprint to the planet. In addition, it directly diminishes the road kills and helps save the animals. Interestingly, the choice of being on two wheels than four it does not only protect the four-legged friends of ours but also the no-legged, big brained, wet and mysterious marine friends of ours: the whales! Feel free to find this slightly overstretched but bear with me and I will unfold this connection for you.

Biking works without consuming fossil fuels and for this reason it can affect procedures and the market of oil and gas operations. In contrast to what some people believe, our everyday choices and behaviors can actually change/save the world.

Change
You are more influential than you think

If you care, you can actively contribute to fossil fuel consumption and affect the correspondent impacts. Besides the joy of biking, this is the focus of this post: you save money on fuel and save the earth from having its intestines removed.

Oil makes the world go round

It has been estimated that about 130 billion tons of crude oil have been extracted from the ground since commercial drilling began (1870). According to the Institute of Mechanical Engineers, there are still 1.3 trillion barrels (1 barrel~160 liters) of oil reserve left in the world’s major fields (Saudi Arabia, Iraq, The United Arab Emirates, Kuwait, Iran) which at present rates of consumption should last about 40 years. Humanity has managed to use in just about 150 years a resource that took probably up to millions of years to form! About half of this amount has been consumed in the last 25 years.

Wait a minute, how old are you. Hmmm, did you do it?

Needless to say that the oil deposits are not distributed homogeneously around the world. Also remember that are not consumed equally by everyone either. The world’s 2/3 of the remaining oil deposits are, as you correctly guessed, in the Middle East. The United States has only 4% of the world reserves but consumes over 25% of the oil consumed worldwide and ends up importing more than half of its supplies.

At this point exactly, I am being antsy for political comments and discussion, but since this is not the appropriate platform, I will limit myself to let you think about the sacrifices that a person (usually without realizing) or a government (always consciously but trying to mask it) are willing to make to get access to the oily wells.

#1 (and the only one discussed here) sacrifice: the ecosystem

The carbon emissions by burning petroleum is contributing to the greenhouse effect that affects our climate that in turn has gone bonkers. Intense and extreme weather conditions seem to occur and new historic records of high or low temperatures are being broken almost every year in many parts of the world, including Alaska and the East Coast of United States correspondingly.

Our greed for black gold has taken the geoscientists and the oil companies to the oceans. In the USA, Alaska has been the target for oil exploration, where a vicious circle is taking place. Since the industrialization and the burning potato of climate change occurred, the ice is melting with higher rates, the glaciers’ volume decreases, and land or part of the ocean that before were inaccessible are now exposed. What an opportunity has risen! We can now drill for more oil to burn, emit more CO2 and enhance the rapid ice melting.

Do we want to ride this carousel?

In addition to the oil industry horror that took place in Alaska and the Gulf of Mexico before, the most current USA oil hunt has now taken oil companies to the Atlantic. I will explain more about this in a bit.

It is clear that the Exxon Valdez oil spill in Alaska (1989) and the Deepwater Horizon explosion in the Gulf of Mexico (2010) were accidents during the extraction and the transportation of the oil. The impacts were obvious to everyone with dramatic images of black seas, tarred beaches, sea birds covered in thick oil, and dead baby dolphins stranded on the coasts that blackened everyone’s heart.

00c1ftdr

Before even the pumping of oil from the Earth’s guts begins, other risks for the environment are underlying that are not obvious to everyone and are hard to identify.

The oil is buried deep below the ground and the ocean floor. How do you find something so well hidden? The geoscientists’ secret weapon is called airgun and it is exactly what its name says: a gun that shoots air.

Are the guns of air innocent as they sound?

The seismic airguns used for oil and gas exploration are NOT the same as the ones that we add soap and water and make bubbles filled with air, wouldn’t that be nice? Instead, they blast compressed air, waves of energy, in to the ocean floor to use the echo and take an image of what it is beneath it. Each layer within the Earth reflects a portion of the wave’s energy back and allows the rest to refract through. These reflected energy waves are recorded and their differences in arriving time can tell us about the different materials in the ground where the sound has different speed. The general principle is based on the technique of echolocation that bats, dolphins and sperm whales use. They send waves of sound that bounce off objects, go back to their ears and give an acoustic picture that can be as high definition and detailed as an x-ray.

For the seismic exploration as is called, hydrophones are used as the ears that listen and record the echo of the sound. Similar hydrophones to what I use to listen and record the voices of the whales.

Boats tow large arrays of airguns that shoot energy waves strong enough to penetrate the sea bottom and travel miles into it. These airguns can be so loud that resemble dynamite explosions, are repeated about every 10 seconds for whole days and often periods of months.

Image61
How to take underground “photographs”

 

Now imagine yourself living in a town that is bombed all day every day for months.

A deaf whale is a dead whale

The oceans are “worlds of sound” and marine mammals count on sound and their acoustic as well as vocal abilities to communicate with each other, find mates, locate food and navigate. Can you imagine the impact of these explosions to their lives?

Depending on their proximity to the operating airguns, whales can be physically harmed, deafened, or can alter their behavior, leave the area and move miles away to avoid the noise or temporarily lose their ability to hear. This intense noise can mask acoustic signals that come from other animals and hence interfere with adult breeding calls, or degrade anti-predator responses. Mothers and calves use sound to communicate underwater hence such loud noise can increase the risk of calves being separated from their mothers with lethal effects. The sounds from the airguns are loud enough to disrupt activities of blue and other endangered marine mammal species essential to foraging and reproduction over vast ocean areas. Over time, airgun noise can cause chronic behavioral and physiological stress, just like intense noise pollution can cause to people, that can suppress reproduction and increase mortality and morbidity. Not good.

Make a change

Currently, there has been a reaction to the USA federal government for having released a map with the areas where oil companies want to look (hear) for oil. Regulations for surveying in the Atlantic were finalized last summer, while this January a proposed plan for offshore drilling was released. It is a humongous area on the East coast and includes the habitat for a variety of marine mammals, including the 500 remaining critically endangered Northern Right Whales. Thanks Obama!

Even if seismic can mask the voices of whales they cannot shut down our voices.

Do you want to help?

You can be part of the social media campaign designed at getting out the facts about seismic exploration and urge the Obama administration to reverse the decision to allow seismic surveys for oil and gas in the Atlantic.

For more info you can read here the  letter to the Bureau of Ocean Energy Management expressing concern over the introduction of seismic oil and gas exploration along the U.S. mid-Atlantic and south Atlantic coasts (sent on 3/5/2015.) and here the letter to President Obama urging him to wait on new science before permitting the use of seismic airguns in the Atlantic Ocean (sent on 2/20/2014.)

Here is what you could do to be part of this:

  • Print out the sign and fill in your name and affiliation/position.
  • Take a picture of yourself holding the sign. It reads:

“Seismic airgun exploration for oil and gas puts marine life at risk of serious harm.”

Send the photo to: npyne@oceana.org

Should be something like this:

Make some sound without speaking

It is not just USA being thirsty for oil though. I am recently working on the Environmental Baseline Study for two locations in the Ionian Sea in Greece that got approved for oil exploration and drilling. Ionian Sea is a significant habitat for eight marine mammal species with critically endangered, endangered and vulnerable species among them. The sperm whale, monk seal, common dolphins, bottlenose dolphins and beaked whales are intensively using this area and are particularly sensitive to noise. My responsibility at this point is to make sure that the current presence of these species is carefully recorded before the exploration and operations start so that potential impacts can be evaluated after that.

The same time I have been working on the Strategic Environmental Impact Assessment for the construction of offshore wind farm in 11 locations in Greece. Alternative and renewable energy resources are certainly the direction we should globally be looking towards. However, it is interesting to know that potential negative impacts can also occur to marine organisms during their construction and operation. For this reason, the mitigation measures are of great importance and I expect them to be taken into account.

One more reason that we love biking is that it is quite as a squirrel. Imagine how much more peaceful this world would be with more bikes and less cars. This paradise exists in the micro-cosmos of OSU campus. We are lucky people the Corvallis people. If it can happen here, it can happen everywhere.

Your turn Athens.

superman picture add cape?
Be your own hero